

DISTRIBUTED DEEP LEARNING MODELS: USING TENSORFLOW AND
PYTORCH ON NVIDIA GPUs AND CLUSTER OF RASPBERRY PIs

By

Jagadish Kumar Ranbirsingh, B.TECH.
Biju Patnaik University of Technology

A Thesis Submitted in Partial Fulfillment of
the Requirements for the Degree of Master of Science in Computer Science

to the office of Graduate and Extended Studies of
East Stroudsburg University of Pennsylvania

May 10, 2019

SIGNATURE/APPROVAL PAGE

The signed approval page for this thesis was intentionally removed from the online copy by an
authorized administrator at Kemp Library.

The final approved signature page for this thesis is on file with the Office of Graduate and
Extended Studies. Please contact Theses@esu.edu with any questions.

mailto:Theses@esu.edu

ABSTRACT

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Computer Science to the office of Graduate and Extended

Studies of East Stroudsburg University of Pennsylvania.

Student’s Name: Jagadish Kumar Ranbirsingh

Title: DISTRIBUTED DEEP LEARNING MODELS: USING TENSORFLOW AND
PYTORCH ON NVIDIA GPUs AND CLUSTER OF RASPBERRY PIs

Date of Graduation: May 10, 2019

Thesis Chair: Haklin Kimm, PhD

Thesis Member: Eun-Joo Lee, PhD

Thesis Member: Minhaz Chowdhury, PhD

Abstract

This thesis work focuses on distributed deep learning approaches implementing Human
Activity Recognition (HAR) using Recurrent Neural Network (RNN) Long Short-Term
Memory (LSTM) model using University of California at Irvine’s machine learning
database. This work includes developing the LSTM residual bidirectional architecture
using Python 3 programming language over distributed TensorFlow and PyTorch
programming frameworks on top of two testbed systems: the first one is Raspberry Pi
cluster that is built upon 16 Raspberry Pis, clustered together by using parameter server
architecture. Another one is the NVIDIA GPU cluster which is equipped with 3 GPUs
named Tesla K40C, Quadro P5000 and Quadro K620. Here we compare and observe the
performance of our deep learning algorithms in terms of execution time and prediction
accuracy with varying number of deep layers with hidden neurons in the neural networks.
Our first comparison is based on using TensorFlow and PyTorch over NVIDIA Maximus
distributed multicore architecture. The second comparison is the execution of the
Raspberry Pi cluster and Octa core Intel Xeon CPU. In this research we present that the
implementations of distributed neural network over the GPU cluster perform better than
the Raspberry Pi cluster and the multicore system.

ACKNOWLEDGMENTS

I would like to express my deep gratitude to my advisor, Dr. Haklin Kimm, for his
everlasting supports and guidance during research and thesis study. Without his
invaluable ideas, encouragements, suggestions and corrections, I couldn’t have achieved
this outcome. I really appreciate his mentorship in this journey. I am also thankful to the
members of my thesis examining committee, Dr. Eun-Joo Lee and Dr. Minhaz
Chowdhury.

I would like to express my sincere gratitude to the NVIDIA Corporation with the
donation of the Tesla K40c GPU and ESU Computer Science department for other GPUs
and Raspberry PIs used on this research project.

Most importantly none of this would have been possible without the patience and
sacrifice of my family. My wife to whom this dissertation is dedicated to, have been a
constant source of courage to push against all odds in these two years. I would like to
express my hearty gratitude to my parents.

v

TABLE OF CONTENTS

LIST OF TABLES………………………………………………………………………vii

LIST OF FIGURES……………………………………………………………………..viii

Chapter

I. INTRODUCTION……………………………………………………………………...1
1.1 Machine Learning with Big Data……………………………………………………...1
1.2 Deep Learning……………………………………………………………………........2
1.3 Deep Learning Using GPU……………………………………………………………3
1.4 Neural Nets……………………………………………………………………………3
 1.4.1 Recurrent Neural Nets……………………………………………………………..4
1.5 Motivation……………………………………………………………………………..4
1.6 Thesis Contribution…………………………………………………………………....5
1.7 Outline of the Thesis…………………………………………………………………..6

II. PREVIOUS STUDIES…………………………………………………………………7
2.1 Big Data…………………………………………………………………………….....7
2.2 TensorFlow……………………………………………………………………………8
 2.2.1 Architecture…………………………………………………………………….....9
2.3 Distributed TensorFlow……………………………………………………………...10
2.4 PyTorch……………………………………………………………………………....15
2.5 MXNet……………………………………………………………………………….16

III. RELATED WORKS………………………………………………………………....18
3.1 Distributed GraphLab Framework……………………………………………….......18
3.2 Parameter Server Framework……………………………………………………......19
 3.2.1 Distributed Synchronous Stochastic Gradient Descent………………………….21
3.3 Deep Gradient Compression…………………………………………………………24

IV. LSTM FOR HUMAN ACTIVITY RECOGNITION……………………………….27
4.1 Human Activity Recognition………………………………………………………...27
 4.1.1 Surveillance System……………………………………………………………...28
 4.1.2 Healthcare………………………………………………………………………..28
 4.1.3 Human Computer Interaction……………………………………………………29
 4.1.4 HAR Sensing Technologies……………………………………………………...29
4.2 Data (UCI Repository)……………………………………………………………….30
 4.2.1 Dataset Information……………………………………………………………...30
 4.2.2 Attribute Information…………………………………………………………….31
 4.2.3 Feature Notes…………………………………………………………………….31
4.3 LSTM…………………………………………………………………………….......35
 4.3.1 Why LSTM……………………………………………………………………....35

vi

 4.3.1.1 CNN…………………………………………………………………………....35
 4.3.1.2 Back Propagation ……………………………………………………………...37
 4.3.1.3 RNN……………………………………………………………………………42
 4.3.1.4 LSTM…………………………………………………………………………..46
 4.3.1.5 Distributed LSTM……………………………………………………………...47
 4.3.1.5.1 Synchronous All – Reduce SGD…………………………………………...48
4.3.2 Baseline LSTM…………………………………………………………………….50
4.3.3 Bidirectional LSTM……………………………………………………..................54
4.3.4 Residual LSTM…………………………………………………………………….55
4.3.5 Deep Residual Bidirectional LSTM…………………………………......................58

V. TEST BED SETUP…………………………………………………………………..64
5.1 NVIDIA GPU Test Bed Setup……………………………………………………….64
5.2 Cluster of Raspberry PIs Setup………………………………………………………72
5.3 Simulation using Raspberry PIs Cluster……………………………………………..77
5.4 Notes on TensorFlow Setup………………………………………………………….82
5.5 Notes on using PyTorch Setup……………………………………………………….85

VI. IMPLEMENTATION………………………………………………………………..87
6.1 Best Learning Rate…………………………………………………………………...87
6.2 CPU Execution Time between Layers…………………………………………….....89
6.3 GPU Execution Time between Layers…………………………………………….....91
6.4 Bidirectional Vs Non-Bidirectional Execution between Layers……………………..99
6.5 Stack Bidirectional Vs Stack Non-Bidirectional Execution between Layers………101
6.6 Best Accuracy between all Layers………………………………………………….103
6.7 Between Deep Residual Bidirectional between 3 x3 and 4 x4……………………..105
6.8 Between Deep Layer vs Prediction Accuracy vs Exe Time in CPU……………….106
6.9 Between Deep Layer vs Prediction Accuracy vs Exe Time in GPU…………….....108
6.10 Deep Layer CPU Execution……………………………………………………….110
6.11 Lower GPU vs Higher CPU……………………………………………………….111
6.12 4 x 4 CPU vs GPU Layers………………………………………………………...113
6.13 Bidirectional Lower vs Stack Higher Layers……………………………………...115
6.14 Stack vs Hidden layer on Execution Time and Prediction Accuracy……………..117
6.15 PyTorch vs TensorFlow Efficiency Comparison………………………………….120
6.16 Raspberry PI Cluster vs Intel Xeon CPU Efficiency Comparison………………..122

VII. CONCLUSION……………………………………………………………………124
7.1 Summary……………………………………………………………………………124
7.2 Future Work………………………………………………………………………...125

APPENDIX A – TEST BED ARCHITECTURE………………………………………127
APPENDIX B – SOURCE CODE……………………………………………………..143
APPENDIX C – TENSORFLOW SET UP…………………………………………….209
APPENDIX D – PYTORCH SETUP…………………………………………………..212
APPENDIX E – RASPBERRY PI CLUSTER………………………………………....214
REFERENCES…………………………………………………………………………217

vii

LIST OF TABLES

Table

1. Dataset Feature Parameters……………………………………………………………32
2. Hardware configuration of CPU………………………………………………………65
3. Hardware configuration of GPUs……………………………………………………..65
4. Hardware configuration of Raspberry Pi 3 Model B+………………………………...73
5. Raspberry Pi Cluster Monte Carlo Simulation2. Best Learning Rate………………...81
6. Best Learning Rate…………………………………………………………………….87
7. Execution rate between Layers in CPU……………………………………………….89
8. Execution rate between Layers in GPU……………………………………………….91
9. Bidirectional vs Non-bidirectional layers execution time…………………………….99
10. Stack Bidirectional vs Stack Non-bidirectional execution time……………………101
11. Best Accuracy in 3 deep layers……………………………………………………..103
12. Deep Residual 3 x3 vs 4 x 4 layers…………………………………………………105
13. Execution matrix of all layers by CPU……………………………………………..106
14. Execution matrix of all layers by GPU……………………………………………..108
15. 4 x 4 Layers deep CPU execution matrix…………………………………………..110
16. 3 x 3 Layer GPU vs 4 x4 Layer CPU execution matrix……………………………111
17. 4 x 4 Layers CPU vs GPU Execution………………………………………………113
18. 2 x 2 Bidirectional Stack Layer vs 3 x 3 Stack Layer………………………………115
19. 2 x 2 stacked hidden layers vs 4 x 4 stacked hidden layers………………………...117
20. Efficiency between PyTorch and TensorFlow……………………………………..120
21. Efficiency between Raspberry Pi Cluster and Intel Xeon CPU……………………122

viii

LIST OF FIGURES

Figure

1. TensorFlow General Architecture……………………………………………………..9
2. TensorFlow Master Worker Model…………………………………………………..11
3. Distributed Master workflow…………………………………………………………12
4. NVIDIA MultiGPU NCCL…………………………………………………………...13
5. Parameter Server Framework………………………………………………………...21
6. Distributed SGD………………………………………………………………………21
7. Deep Gradient Compression………………………………………………………….24
8. Dataset File Structure…………………………………………………………………34
9. Basic Feed-Forward and Recurrent cell………………………………………………35
10. Two Connected Neurons with weights………………………………………………40
11. Back Propagation Rule………………………………………………………………40
12. Convolution Neural Network………………………………………………………..41
13. RNN Sequential Data Learning Approach…………………………………………..43
14. Simple RNN Structure……………………………………………………………….44
15. LSTM Forget Gate…………………………………………………………………...50
16. LSTM Input Gate…………………………………………………………………….51
17. LSTM Processing Data………………………………………………………………51
18. LSTM Output Gate…………………………………………………………………..52
19. The unfolded structure of one-layer baseline LSTM………………………………...53
20. The structure of single layer bidirectional LSTM……………………………………54
21. The structure of single layer residual LSTM………………………………………...57
22. The structure of 2 x 2 residual bidirectional LSTM…………………………………60
23. The residual bidirectional LSTM parameters………………………………………..61
24. NVIDIA Driver Version……………………………………………………………..67
25. CUDA Toolkit Version………………………………………………………………68
26. GPU Memory Array…………………………………………………………………71
27. Distributed TensorFlow API………………………………………………………...72
28. Raspberry PIs NFS connection………………………………………………………76
29. NFS Status…………………………………………………………………………...76
30. TensorFlow Cluster API……………………………………………………………..79
31. TensorFlow Device API……………………………………………………………..79
32. TensorFlow Session API…………………………………………………………….80
33. TensorFlow Server API……………………………………………………………...80
34. Pi Cluster Execution Graph………………………………………………………….82
35. TensorFlow GPU Growth API………………………………………………………82
36. GPU StreamExecutor………………………………………………………………..83
37. GPU Device Selection……………………………………………………………….83
38. Distributed TF Multi GPU…………………………………………………………..84
39. PyTorch Distributed API……………………………………………………………85
40. PyTorch Memory Shuffle……………………………………………………………85

ix

41. Best Learning Rate…………………………………………………………………...88
42. Big Machine CPU Details…………………………………………………………....89
43. Bubble Chart of CPU Execution……………………………………………………..90
44. Column Graph of CPU Execution between Layers………………………………….91
45. Bubble Chart of GPU Execution……………………………………………………..92
46. Column Graph of GPU Execution between Layers………………………………….93
47. 2 x 2 Layers GPU Utilization Snapshot……………………………………………...94
48. 3 x 3 Layers GPU Utilization Snapshot……………………………………………...96
49. 4 x 4 Layers GPU Utilization Snapshot……………………………………………...97
50. 3 x 3 Layers CPU Utilization Snapshot……………………………………………...98
51. Column Graph of Execution time between bidirectional and non-bidirectional…...100
52. Deep Bidirectional vs Deep Non-bidirectional Execution time……………………102
53. Best Accuracy among all types of 3 stacked layers………………………………...104
54. Column graph of 3 x 3 vs 4 x 4 Deep Residual Layers…………………………….105
55. CPU Execution Graph for all Layers……………………………………………….107
56. GPU Execution Graph for all Layers……………………………………………….109
57. Column Graph of 4 x 4 deep Layers CPU execution……………………………….111
58. Column Graph of 3 x 3 GPU vs 4 x 4 CPU Execution Result……………………...113
59. Graph of 4 x 4 deep layers CPU vs GPU Execution………………………………..114
60. Graph of 2 x 2 Bidirectional Stack Layer vs 3 x 3 Stack Layer……………………116
61. Execution time Graph of 2 x2 vs 4x 4 stacked layers………………………………117
62. Execution time graph with stack layers vs hidden layers…………………………..119
63. Execution graph between TensorFlow and PyTorch……………………………….121
64. Execution graph between Single CPU vs Pi Cluster……………………………….123
65. NVIDIA GPU Cards………………………………………………………………..128
66. NVIDIA Driver Repository………………………………………………………...129
67. Graphics Display …………………………………………………………………...130
68. GDM Session……………………………………………………………………….132
69 NVIDIA Driver Successful Installation Snapshot…………………………………..133
70. Ubuntu Driver Display……………………………………………………………..134
71. CUDA Toolkit……………………………………………………………………...135
72. An L2-regularized version of the cost function used in SGD of RNN……………..140
73. TF Project Screen…………………………………………………………………...211
74. PyTorch Project Screen……………………………………………………………..213

1

CHAPTER I

INTRODUCTION

1.1 Machine Learning With Big Data

More than 2.5 quintillion bytes of data are created each day. The prevalence of data will

only increase, so we need to learn how to deal with such large data. Storing this data is

one thing, but what about processing it and developing machine learning algorithms to

work with it? Solving complex computational problems in a short amount of time, as well

as dealing with large-sized data sets and massive amounts of continuously growing data,

are some challenges that are being addressed by parallel processing algorithms. Data

centers deployed with high-end GPUs enable computational storage and network

processing power to support such highly demanding workloads. Access to thousands of

cores of each GPU with high-capacity network and high-IOPS (Input/Output Operations

Per Second) storage allows for ideal infrastructure, which are built for HPC and Big Data

applications. But this is not enough in future. This line of research should focus on

developing new Machine Learning (ML) models on adapting (scaling up) existing

models in order to handle larger scale datasets.

2

1.2 Deep Learning

Deep Learning [1] is a sub-field of machine learning concerned with algorithms inspired

by the structure and function of the brain called artificial neural networks. It uses non-

linear processing units with multiple layers for feature transformation and extraction. It

also reflects concepts in multiple hierarchical fashions which corresponds to various

levels of abstraction. As per Jeff Dean scientist of Google AI Brain, “When you hear the

term deep learning, just think of a large deep neural net. Deep refers to the number of

layers typically and so this kind of the popular term that’s been adopted in the press. I

think of them as deep neural networks generally.” Modern neural network architectures

trained on large datasets can obtain impressive performance across a wide variety of

domains, from speech and image recognition, natural language processing and industry-

focused applications such as fraud detection and recommendation systems.

Deep Learning (DL) has become a true enabler of AI services. In fact, it is the key driver

behind today’s entire field of AI with its real-life practical applications. DL’s business

utilization and its ability to support business objectives have enabled AI services to take a

hot spot at the company strategic table. From life and health sciences, through

engineering and financial modeling, to natural language processing and image

recognition, the employment of DL is growing exponentially year by year. This growth in

applications of AI services is primarily due to the infrastructure behind the curtain and its

utilization of parallel computing with increasingly more advanced GPU technologies to

enable such progress.

As the computational power of the machines grow exponentially, the need come to move

to higher computation CPUs, when CPUs couldn’t provide enough solutions then

technology leaped from CPU to GPU. For DL to take full advantage of the GPU

hardware architecture and acceleration, there needs to be an “easy” way to allow

algorithms to leverage, scale up and consume underlying infrastructure. DL frameworks

represent and combine such sets of tools, interfaces, and libraries, which allow data

3

scientists, engineers, and developers to build, deploy and manage their training models

and networks. They are the building blocks of modern DL deployments. Today, the most

popular DL Frameworks include, but are not limited to Tensorflow, Keras, Caffe 2,

Pytorch, Theano, Chainer, CNTK, and MXNET. Each of these frameworks is built in a

different manner and serves different purposes.

1.3 Deep Learning Using GPU

Deep Learning Neural Networks are becoming continuously more complex. The number

of layers and neurons in a Neural Network is growing significantly, which lowers

productivity and increases costs. DL deployments leveraging GPUs [2] drastically reduce

the size of the hardware deployments, increase scalability, dramatically reduce the

training and ROI times and lower the overall deployment cost. The new GPU based

systems with access to the latest NVIDIA GPU architectures with PCIe interface or with

NVLink interconnections can utilize the access to a massive amount of DL computing

power by using GPU clusters.

1.4 Neural Nets

There are three classes of artificial neural networks in general. They are:

Multilayer Perceptrons (MLPs)

Convolutional Neural Networks (CNNs)

Recurrent Neural Networks (RNNs)

In this project we have extensively used RNNs [3] because of their internal memory.

RNNs are able to remember important things about the input they receive, which enables

them to be very precise in predicting the future value.

4

 1.4.1 Recurrent Neural Nets

RNNs are the state of the art algorithm for sequential data and used by Apples Siri and

Googles Voice Search. This is because, it is the first algorithm that remembers its input,

due to an internal memory, which makes it perfectly suited for Machine Learning

problems that involve sequential data. It is one of the algorithms behind the scenes of the

amazing achievements of Deep Learning [2] in the past few years. In a RNN, the

information cycles through a loop. When it makes a decision, it takes into consideration

the current input and also learned values received from previous inputs. Therefore a RNN

has two inputs, the present and the recent past. A usual RNN has a short-term memory.

In combination with a LSTM [4] they also have a long-term memory which is very

powerful and used in computation of complex datasets.

1.5 Motivation

 The single CPU machine learning is old. It’s there from 1959 which is coined by

Samuel, Arthur L [5].It was published in IBM Journal of Research and Development.

Then comes GPU. GeForce 256 was marketed as "worlds first 'GPU', or “Graphics

Processing Unit”, a term coined by NVIDIA at that time as "a single-chip processor with

integrated lighting, triangle setup/clipping, and rendering engines that is capable of

processing a minimum of 10 million polygons per second. The GeForce 256 is the

original release in NVIDIA's "GeForce" product-line announced on August 31, 1999 and

released on October 11, 1999. [6] The machine learning using GPU based data

warehouse is new and still going on. Now a days the rate of data generation is very high

because of social networking sites, like Facebook, Twitter, WhatsApp, WeChat,

Instagram and the list goes on. With advancement in technologies, sensor networks, IoT

things, automated systems generate much more data every seconds. So in near future, the

data warehouses would be established in multiple geographical areas across the globe.

Unfortunately, current deep learning methodologies which based on single location or

single dataset won’t work. Distributed optimization and inference is becoming a

5

prerequisite for solving large scale deep learning problems. At scale no single machine

can solve these problems efficiently, due to the growth of data and the resulting model

complexity, often manifesting itself in an increased number of parameters. [7]

1.6 Thesis Contribution

 Inspired by Scaling distributed machine learning with the parameter server [8], we

proposed a cluster based platform which is designed by parameter server architecture.

The thesis focus on distributed deep learning models to simulate Human Activity

Recognition. The Deep Learning LSTM model do the iterations on UCI dataset by using

distributed TensorFlow, PyTorch programming frameworks. This includes writing the

LSTM residual bidirectional architecture using Python 3 programming language and

TensorFlow and PyTorch APIs, where both the APIs support the distributed architecture.

Following which, the program is verified in the distributed platform. To meet the

distributed hardware demand two platforms are created, first hardware is Raspberry Pi

cluster having 16 nodes, which is built upon 16 Raspberry Pis 3 B+ models clustered

together by using parameter server architecture, each having 1 GB of RAM and 32 GB of

flash storage. Second hardware is, the NVIDIA GPUs cluster which is having 3 GPUs

named Tesla K40c, Quadro P5000 & Quadro K620. It is built by NVIDIA Maximus

formation on top of Octa-core Intel Xeon CPU having 32 GB RAM and 2 TB SSD

primary storage with 10 TB HDD secondary storage. Thus, comparing and observing the

performance in terms of executing speed and effieciency of deep learning iterations by

varying number of deep layers with hidden neurons in GPUs and CPUs. While the first

approach is based on using TensorFlow and PyTorch over NVIDIA GPUs parallel and

distributed multicore architecture. The second approach is by comparing the execution

speed and efficiency of CPUs of Pi cluster along with Inter Xeon CPU. The research

focuses on energy-efficient deep learning computing, which is at the intersection between

deep learning and distributed computer.

6

1.7 Outline of the Thesis

The remaining of the thesis is organized in the following.

Chapter 2 gives some background information about work on the distributed deep

learning models. It introduces the distributed deep learning APIs of TensorFlow,

PyTorch.

Chapter 3 demonstrates related research work on this topic. It introduces the similar

problems and previous research happened on it.

Chapter 4 discusses most about the Why LSTM? , Different LTSM architectures and our

proposed LSTM residual bidirectional layer.

Chapter 5 shows the preparation of test beds for this research. It shows the related works

during the hardware cluster development.

Chapter 6 implements the deep learning models in distributed platform and compares the

GPU computational power between two API in GPU cluster and the computational power

between the CPU cluster and standalone CPU machine while doing the iterations. It gives

all the implementations with execution time and predicted accuracy with varying dense

layers along with different hidden nodes.

Chapter 7 is the conclusion of our thesis work.

7

CHAPTER II

PREVIOUS STUDIES

2.1 Big Data

We now live in the era of the big data. In this era, the volume of data has exploded. The

magnitude of data generated and shared by businesses, public administrations, numerous

industrial sectors, not-for-profit sectors and scientific research has increased

immeasurably [9]. These data include textual content (i.e. structured, semi-structured as

well as unstructured) to multimedia content (e.g. videos, images, audio) on a multiplicity

of platforms (e.g. machine-to-machine communications, social media sites, sensor

networks, cyber-physical systems and Internet of Things [IoT]). Dobre and Xhafa [10]

report that every day the world produces around 2.5 quantilion gigabytes of data (2.3

trillon gigabytes), with 90% of these data generated in the world being unstructured. It is

assert that by 2020, over 40 Zettabytes (or 40 trillion gigabytes) of data will be generated,

imitated, and consumed. With this overwhelming amount of complex and heterogeneous

data pouring from any-where, any-time and any-device there is undeniably an era of Big

Data – a phenomenon also referred to as the Data Deluge. In essence, Big Data is the

artifact of each human individual as well as collective intelligence generated and shared

mainly through the technological environments where virtually anything and everything

8

can be documented, measured and captured digitally, and while doing that transformation

into data – a process that Mayer-Schönberger and Cukier [11] also referred as

datafication. Regardless of where Big Data is generated from and shared to, with the

reality of Big Data come the challenges of analyzing it in a way that brings Big Value.

Nevertheless, the growth of data in volumes in the digital world seems to out-speed the

advancement of many extant computing infrastructures. The well-established data

processing technologies, for example databases and data warehouses are becoming

inadequate infront of the amount of data the world is going to generate. The massive

amount of data needs to be analyzed in an iterative, as well as in a time sensitive manner.

The ability to work with this massive scale of datasets is very critical. Traditional

computing approaches with a single computer having a multicore processor to deal with

some amount of data are not suitable for this massive scale datasets.

In the post-ImageNet [12] era, computer vision and machine learning researchers are

solving more complicated AI problems using larger datasets which drives the demand for

more computation. However, Moore’s Law is slowing down, Dennard scaling has

stopped, and the amount of computation per unit cost and power is no longer increasing

at its historic rate. This mismatch between supply and demand of computation highlights

the need for co-designing efficient machine learning algorithms and domain-specific

hardware architectures for massive scale datasets. The vast design space across algorithm

and hardware is difficult to be explored by available engineered applications or tools.

Therefore, we need different architectures with distributed workloads to bridge the gap.

2.2 TensorFlow

Created by the Google Brain team, TensorFlow [13] is an open source library for

numerical computation and large-scale machine learning. TensorFlow bundles together a

slew of machine learning and deep learning (aka neural networking) models and

algorithms and makes them useful by way of a common metaphor. It uses Python to

provide a convenient front-end API for building applications with the framework, while

9

executing those applications in high-performance C++. TensorFlow can train and run

deep neural networks for handwritten digit classification, image recognition, word

embeddings, sequence-to-sequence models for machine translation, natural language

processing, and PDE (partial differential equation) based simulations. TensorFlow

supports production prediction at scale, with the same models used for training.

2.2.1 Architecture

The TensorFlow is a cross-platform library. Figure 1 illustrates its general architecture. C

API separates user level code in different languages from the core runtime.

Figure .1 TensorFlow General Architecture

Client

 Defines the computation as a dataflow graph.

 Initiates graph execution using a session.

 Distributed Master

 Prunes a specific subgraph from the graph, as defined by the arguments

to session.run().

10

 Partitions the subgraph into multiple pieces that run in different processes and

devices.

 Distributes the graph pieces to worker services.

 Initiates graph pieces execution by worker services.

 Worker Services (one for each task)

 Schedule the execution of graph operations using kernel implementations,

appropriate

to the available hardware (CPUs, GPUs, etc).

 Send and receive operation results to and from other worker services.

 Kernel Implementations

 Perform the computation for individual graph operations.

2.3 Distributed TensorFlow

TensorFlow is designed for large-scale distributed training and inference, but it is also

flexible enough to support small scale new machine learning models and system-level

optimizations.

tf.distribute.Strategy is a TensorFlow API to distribute training across multiple GPUs,

multiple machines or TPUs. Using this API, users can distribute their existing models and

training code with minimal code changes.

11

 Figure. 2 TensorFlow Master Worker Model

Client

Users write the client TensorFlow program that builds the computation graph. This

program can either directly compose individual operations or use a convenience library

like the Estimators API to compose neural network layers and other higher-level

abstractions. TensorFlow supports multiple client languages but prioritized Python and

C++ for use. The client creates a session, which sends the graph definition to the

distributed master as a tf.GraphDef protocol buffer. When the client evaluates a node or

nodes in the graph, the evaluation triggers a call to the distributed master to initiate

computation. In Figure 3, the client has built a graph that applies weights (w) to a feature

vector (x), adds a bias term (b) and saves the result in a variable (s).

The Distributed Master

The master prunes the graph to obtain the subgraph required to evaluate the nodes

requested by the client, then partitions the graph to obtain graph pieces for each

participating device, and caches these pieces so that they may be re-used in subsequent

steps.

Since the master sees the overall computation for a step, it applies standard optimizations

12

such as common subexpression elimination and constant folding. It then coordinates

execution of the optimized subgraphs across a set of tasks.

Figure. 3 Distributed Master workflow

Worker Service

The worker service in each task handles requests from the master, schedules the

execution of the kernels for the operations that comprise a local subgraph, and mediates

direct communication between tasks. TensorFlow optimize the worker service for

running large graphs with low overhead. This current implementation can execute tens of

thousands of subgraphs per second, which enables a large number of replicas to make

rapid, fine-grained training steps. The worker service dispatches kernels to local devices

and runs kernels in parallel when possible, for example by using multiple CPU cores or

GPU streams.

13

TensorFlow specialize Send and Recv operations for each pair of source and destination

device types.Transfers between local CPU and GPU devices use the

cudaMemcpyAsync() API to overlap computation and data transfer.Transfers between

two local GPUs use peer-to-peer DMA, to avoid an expensive copy via the host CPU. For

this reason, working on GPUs using TensorFlow is much faster as compared to CPU.For

transfers between tasks, TensorFlow uses multiple protocols, including: gRPC over TCP,

RDMA over Converged Ethernet.

TensorFlow have preliminary support for NVIDIA's NCCL library for multi-GPU

communication. The supported API is tf.contrib.nccl.

Figure. 4 Nvidia MultiGPU NCCL

The NVIDIA Collective Communications Library (NCCL) implements multi-GPU and

multi-node collective communication primitives that are performance optimized for

NVIDIA GPUs. NCCL provides routines such as all-gather, all-reduce, broadcast,

reduce, reduce-scatter, that are optimized to achieve high bandwidth over PCIe and

NVLink high-speed interconnect. In Figure 4, it reflects NCCL communication.

Kernel Implementations

The runtime contains over 200 standard operations including mathematical array

manipulation, control flow and state management operations. Each of these operations

14

can have kernel implementations optimized for a variety of devices. In many of the

operations, kernels are implemented using Eigen::Tensor, which uses C++ templates to

generate efficient parallel code for multicore CPUs and GPUs; TensorFlow uses libraries

like cuDNN where a more efficient kernel implementation is possible. TensorFlow

implements quantization, which enables faster inference in environments such as mobile

devices and high-throughput datacenter applications, and use the gemmlowp low-

precision matrix library to accelerate quantized computation. (gemmlowp is a library for

multiplying matrices whose entries are quantized as 8-bit integers. It is used in mobile

neural network applications. It has received contributions from Intel and ARM, ensuring

that it is efficient on various mobile CPUs).

If it is difficult or inefficient to represent a subcomputation as a composition of

operations, users can register additional kernels that provide an efficient implementation

written in C++. For better computation, TensorFlow recommends registering own fused

kernels for some performance critical operations, such as the ReLU and Sigmoid

activation functions and their corresponding gradients. The XLA Compiler has an

experimental implementation of automatic kernel fusion.

TensorFlow provides eager execution mode for developers who need to debug and gain

introspection into TensorFlow apps, which lets you evaluate and modify each graph

operation separately and transparently, instead of constructing the entire graph as a single

opaque object and evaluating it all at once. The TensorBoard visualization suite lets the

developer inspect and customize the graphs by way of an interactive, web-based

dashboard.

15

2.4 PyTorch

PyTorch [14] is a Python open source deep learning framework that was primarily

developed by Facebook’s artificial intelligence research group and was publicly

introduced in January 2017.

Building Block #1: Tensors

PyTorch provides a basic data structure called a Tensor, which is very similar to

NumPy’s ndarray. But unlike the latter, tensors can tap into the resources of a GPU to

significantly speed up matrix operations.

Building Block #2: Computation Graph

When a neural network is trained, researchers need to compute gradients of the loss

function, with respect to every weight and bias, and then update these weights using

gradient descent. With neural networks hitting billions of weights, doing the above step

efficiently can make or break the feasibility of training.

In PyTorch, the computation graph is simply a data structure that allows to efficiently

apply the chain rule to compute gradients for all of your parameters.

Building Block #3: Variables and Autograd

The Variable is just like a Tensor, is a class that is used to hold data. Variables are

specifically tailored to hold values which change during training of a neural network, i.e.

the learnable parameters of the network. Tensors on the other hand are used to store

values that are not to be learned. For example, a Tensor maybe used to store the values of

the loss generated by each example.

The graph is differentiated using the chain rule. If any of tensors are non-scalar (i.e. their

data has more than one element) and require gradient, the function additionally requires

specifying grad_tensor. It should be a sequence of matching length, which contains

gradient of the differentiated function with respect to corresponding tensors.

16

Building Block #4: Function

PyTorch abstracts the need to write two separate functions (for forward, and for

backward pass), into two member of functions of a single class called

torch.autograd.Function.

PyTorch combines Variables and Functions to create a computation graph.

Dynamic Computation Graphs

A Dynamic Computational Graph framework is a system of libraries, interfaces, and

components that provide a flexible, programmatic, run time interface that facilitates the

construction and modification of systems by connecting operations. PyTorch creates the

runtime dynamic computation graphs.

To qualify as a Dynamic Computational Graph framework, the framework must merely

support the deferring of the determination of algorithm to run time, therefore opening the

door to a plethora of operations on the computational dependencies and data flow at run

time. The basics of the operations deferred must include the specification, manipulation,

execution, and storage of the directed graphs that represent systems of operations.

The advantage of Dynamic Computational Graphs appears to include the ability to adapt

to a varying quantities in input data. It seems like there may be automatic selection of the

number of layers, the number of neurons in each layer, the activation function, and other

neural network parameters, depending on each input set instance during the training.

2.5 MXNet

MXNet [15] is a deep Learning framework created by Apache, which supports a plethora

of languages, like Python, Julia, C++, R, or JavaScript. It’s been adopted by Microsoft,

Intel, and Amazon Web Services.

17

The MXNet framework is known for its great scalability, which is used by large

companies mainly for speech and handwriting recognition, NLP, and forecasting.

18

CHAPTER III

RELATED WORKS

3.1 Distributed GraphLab Framework

There are several distributed machine learning framework works available today. The

high-level data parallel frameworks, like MapReduce, simplify the design and

implementation of large-scale data processing systems, but they do not efficiently support

many important data mining and machine learning algorithms and can lead to inefficient

learning systems. To fill this critical void, the GraphLab abstraction is introduced which

naturally expresses asynchronous, dynamic, graph-parallel computations while ensuring

data consistency and achieving a high degree of parallel performance in the shared-

memory setting. [16]

Turi is a graph-based, high performance, distributed computation framework written in

C++. The GraphLab project was started by Prof. Carlos Guestrin of Carnegie Mellon

University in 2009. It is an open source project using an Apache License. While

GraphLab was originally developed for Machine Learning tasks, it has found great

success at a broad range of other data-mining tasks; out-performing other abstractions by

orders of magnitude. [17]

As the amounts of collected data and computing power grows (multicores, GPUs,

clusters, clouds), modern datasets are no longer fit into one computing node. Efficient

19

distributed/parallel algorithms for handling large scale datasets are required. The

GraphLab framework is a parallel programming abstraction targeted for sparse iterative

graph algorithms. GraphLab provides a high level programming interface, allowing a

rapid deployment of distributed machine learning algorithms. [18] The main design

considerations behind the design of GraphLab are, sparse data with local dependencies,

iterative algorithms, potentially asynchronous execution.

Main features of GraphLab are

 a unified multicore and distributed API, write once run efficiently in both shared

and distributed memory systems

 It is tuned for performance by optimized C++ execution engine leverages

extensive multi-threading and asynchronous IO

 Scalable, GraphLab intelligently places data and computation using sophisticated

new algorithms

 HDFS Integration

 Powerful Machine Learning Toolkits

GraphLab framework is extended to the substantially more challenging distributed setting

while preserving strong data consistency guarante. The developed graph based

extensions, used to pipelined locking and data versioning to reduce network congestion

and mitigate the effect of network latency. The introduced fault tolerance in the

GraphLab abstraction using the classic Chandy-Lamport snapshot algorithm demonstrate

how easily it can be implemented by exploiting the GraphLab abstraction itself.

3.2 Parameter Server Framework

The parameter server is designed to simplify developing distributed machine learning

applications as shown in Figure. 5 [8]. An instance of the parameter server can run more

than one algorithm simultaneously. Parameter server nodes are grouped into a server

group and several worker groups as shown in Figure 5. A server node in the server group

20

maintains a partition of the globally shared parameters. Server nodes communicate with

each other to replicate and/or to migrate parameters for reliability and scaling. A server

manager node maintains a consistent view of the metadata of the servers, such as node

liveness and the assignment of parameter partitions. Each worker group runs an

application. A worker typically stores locally a portion of the training data to compute

local statistics such as gradients. Workers communicate only with the server nodes (not

among themselves), updating and retrieving the shared parameters. There is a scheduler

node for each worker group. It assigns tasks to workers and monitors their progress. If

workers are added or removed, it reschedules unfinished tasks.

The parameter server supports independent parameter namespaces. This allows a worker

group to isolate its set of shared parameters from others. Several worker groups may also

share the same namespace: we may use more than one worker group to solve the same

deep learning application [19] to increase parallelization. Another example is that of a

model being actively queried by some nodes, such as online services consuming this

model. Simultaneously the model is updated by a different group of worker nodes as new

training data arrives.

The shared parameters are presented as (key, value) vectors to facilitate linear algebra

operations. They are distributed across a group of server nodes. Any node can both push

out its local parameters and pull parameters from remote nodes. By default, workloads, or

tasks, are executed by worker nodes; however, they can also be assigned to server nodes

via user defined functions. Tasks are asynchronous and run in parallel. The parameter

server provides the algorithm designer with flexibility in choosing a consistency model

via the task dependency graph and predicates to communicate a subset of parameters.

21

Figure. 5 Parameter Server Framework

3.2.1 Distributed Synchronous Stochastic Gradient Descent

Figure. 6 Distributed SGD

22

In Figure. 6 each node independently calculates gradients by worker nodes.

In real time scenario, each training node performs the forward-backward pass on different

batches sampled from the training dataset with the same network model. The gradients

from all nodes are summed up to optimize their models. By this synchronization step,

models on different nodes are always the same during the training. The aggregation step

can be achieved in two ways. One method is using the parameter servers as the

intermediary which store the parameters among several servers [20]. The nodes push the

gradients to the servers while the servers are waiting for the gradients from all nodes.

Once all gradients are sent, the servers update the parameters, and then all nodes pull the

latest parameters from the servers.

One major disadvantage is network bandwidth. Large-scale distributed training improves

the productivity of training deeper and larger models (Chilimbi et al., 2014; Xing et al.,

2015; Moritz et al., 2015; Zinkevich et al., 2010). Synchronous stochastic gradient

descent (SGD) is widely used for distributed training. By increasing the number of

training nodes and taking advantage of data parallelism, the total computation time of the

forward-backward passes on the same size training data can be dramatically reduced.

However, gradient exchange is costly and dwarfs the savings of computation time (Li et

al., 2014; Wen et al., 2017), especially for recurrent neural networks (RNN) where the

computation-to-communication ratio is low. Therefore, the network bandwidth becomes

a significant bottleneck for scaling up distributed training. [21]

23

Algorithm 1. Distributed Subgradient Descent

As shown in Algorithm 1, the training data is partitioned among all the workers, which

jointly learn the parameter vector w. Because each worker works independently, the

system uses a mechanism by expressing the updates as a subgradient—a direction in

which the parameter vector w should be shifted and aggregates all subgradients before

applying them to w. Data is sent between nodes using push and pull operations. A tasks is

issued by a remote procedure call. It can be a push or a pull that a worker issues to

servers. It can also be a user-defined function that the scheduler issues to any node. Tasks

may include any number of subtasks. Tasks are executed asynchronously. In Algorithm

24

1, a worker pushes its temporary local gradient g to the parameter server for aggregation.

The most expensive step in Algorithm 1 is computing the subgradient to update w. This

task is divided among all of the workers, each of which execute WORKERITERATE.

The task WORKERITERATE in Algorithm 1 contains one push and one pull. In

Algorithm 1 each worker pushes its entire local gradient into the servers, and then pulls

the updated weight back. The aggregation logic in SERVERITERATE updates the

weight w only after all worker gradients have been aggregated.

3.3 Deep Gradient Compression

Figure. 7 Deep Gradient Compression

Deep Gradient Compression (DGC) solves the communication bandwidth problem by

compressing the gradients, as shown in Figure 8. To ensure no loss of accuracy, DGC

employs momentum correction and local gradient clipping on top of the gradient

sparsification to maintain model performance. DGC also uses momentum factor masking

and warmup training to overcome the staleness problem caused by reduced

communication. [21]

25

Techniques in Deep Gradient Compression

Gradient Sparsification

Reduce the communication bandwidth by sending only the important gradients.

User the gradient magnitude as a simple heuristics for importance.

Only gradients larger than a threshold are transmitted which is top 0.01%.

Local Gradient Accumulation Gradient Accumulation algorithms represent an

important component of distributed training systems. These algorithms are responsible

for accumulating the local gradients from each worker node and distributing the updated

global gradients back to the worker nodes. The All Reduce algorithm makes for a very

good fit for this functionality and also removes the need for a master server by espousing

a peer to peer paradigm for data exchange.

Local Gradient Clipping Gradient clipping is widely adopted to avoid the exploding

gradient problem [22]. The method proposed by Pascanu et al. (2013) rescales the

gradients whenever the sum of their L2-norms exceeds a threshold. This step is

conventionally executed after gradient aggregation from all nodes. The accumulation of

gradients over iterations on each node can be performed independently, where the

gradient clipping is performed locally before adding the current gradient Gt to previous

accumulation (Gt-1 in Algorithm 2) [23].

Momentum Factor Masking Mitliagkas et al. (2016) discussed the staleness caused by

asynchrony and described it as implicit momentum. Inspired by that, it introduce

momentum factor masking, to alleviate staleness. Instead of searching for a new

momentum coefficient as suggested in Mitliagkas et al. (2016) [24], it simply apply the

same mask to the accumulated gradients. This mask stops the momentum for delayed

gradients, preventing the stale momentum from carrying the weights in the wrong

direction.

26

Algorithm 2. All-reduce Algorithm with local gradient clipping

When training the recurrent neural network with gradient clipping, gradient clipping is

performed locally before adding the current gradient Gk
t to previous accumulation Gk

t-1

in Algorithm 2.

27

CHAPTER IV

HUMAN ACTIVITY RECOGNITION

USING LSTM

4.1 HUMAN ACTIVITY RECOGNITION

 Human Activity Recognition (HAR) is a broad field of study concerned with an

ability to interpret human body gesture or motion via sensors and determine human

activity or action [25]. Most of the human daily tasks can be simplified or automated if

they can be recognized via HAR system. Typically, HAR system can be either supervised

or unsupervised [26]. A supervised HAR system requires some prior training with

dedicated datasets while unsupervised HAR system is being configured with a set of rules

during development. HAR is considered as an important component in various scientific

research contexts i.e. surveillance, healthcare and human computer interaction (HCI)

However, it remains a very complex task, due to unsolvable challenges such as sensor

motion, sensor placement, cluttered background, and inherent variability in the way

activities are conducted by different human. HAR covers three area of sensing

technologies namely RGB cameras, depth sensors and wearable devices. The popularity

of depth sensors and wearable devices in HAR research is well established.

28

4.1.1. Surveillance System

In surveillance context, HAR was adopted in surveillance systems installed at public

places i.e. shopping malls or airports, which introduced a new paradigm of human

activity prediction to prevent crimes and dangerous activities from occurring at public

places. Lasecki et al. proposed a system that provides robust, deploy-able activity

recognition by supplementing existing recognition systems with on-demand, real-time

activity identification using inputs from the crowds at public places [27].

4.1.2. Healthcare

 In the field of Healthcare, HAR is employed in healthcare systems which are

installed in residential environment, hospitals and rehabilitation centers. HAR is used

widely for monitoring the activities of elderly people staying in rehabilitation centers for

chronic disease management and disease prevention [28]. HAR is also integrated into

smart homes for tracking the elderly people’s daily activities [29]. Besides, HAR is used

to encourage physical exercises in rehabilitation centers for children with motor

disabilities [30], post-stroke motor patients, patients with dysfunction and psycho motor

slowing, and exergaming [31]. Other than that, the HAR is adopted in monitoring patients

at home such as estimation of energy expenditure to aid in obesity prevention and

treatment and life logging. HAR is also applied in monitoring other behaviors such as

stereotypical motion conditions in children with Autism Spectrum Disorders (ASD) at

home, abnormal conditions for cardiac patients and detection of early signs of illness.

Other healthcare related HAR solutions such as fall detection and intervention for elderly

people are available [32].

29

4.1.3. Human Computer Interaction

 In the field of human computer interaction, HAR has been applied quite

commonly in gaming and exergaming such as Kinect, Nitendo Wii and full-body motion

based games for older adults and adults with neurological injury [33]. Through HAR,

human body gestures are recognized to instruct the machine to complete dedicated tasks.

Elderly people and adults with neurological injury can perform a simple gesture to

interact with games and exergames easily. HAR also enables surgeons to have intangible

control of the intraoperative image monitor by using standardized free-hand movements

[34].

4.1.4 HAR Sensing Technologies

 Recognizing human activity using RGB camera is simple but having low

efficiency. A RGB camera is usually attached to the environment and the HAR system

will process image sequences captured with the camera. Most of the conventional HAR

systems using this sensing technology are built with two major components which is the

feature extraction and classification [35]. Besides, most of the RGB-HAR systems are

considered as supervised system where trainings are usually needed prior to actual use.

Image sequences and names of human activities are fed into the system during training

stage. Real time captured image sequence are passed to the system for analysis and

classification by dedicated computational/classification algorithms such as Support

Vector Machine (SVM).

 The depth sensor also known as infrared sensor or infrared camera is adopted into

HAR systems for recognizing human activities. The depth sensor projects infrared beams

into the scene and recapture them using its infrared sensor to calculate and measure the

depth or distance for each beam from the sensor. The reviews found that Microsoft

Kinect sensor is commonly adopted as depth sensor in HAR [33]. Since the Kinect sensor

30

has the capability to detect 20 human body joints with its real-world coordinate, many

researchers utilized the coordinates for human activity classification.

 HAR using wearable-based requires single or multiple sensors to be attached to

the human body. Most commonly used sensor includes 3D-axial accelerometer,

magnetometer, gyroscope and RFID tag. With the advancement of current smart phone

technologies, many research works use mobile phone as sensing devices because most

smart phones are equipped with accelerometer, magnetometer and gyroscope [36]. A

physical human activity can be identify easily through analyzing the data generated from

various wearable sensing after being process and determine by classification algorithm.

4.2 Dataset (UCI Repository)

4.2.1 Data Set Information

The dataset named “Human Activity Recognition Using Smartphones Data Set” [37] is

used from UCI repository in this thesis. The experiments have been carried out with a

group of 30 volunteers within an age bracket of 19-48 years. Each person performed six

activities (WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS,

SITTING, STANDING, LAYING) wearing a smartphone (Samsung Galaxy S II) on the

waist. Using its embedded accelerometer and gyroscope, they captured 3-axial linear

acceleration and 3-axial angular velocity at a constant rate of 50Hz. The experiments

have been video-recorded to label the data manually. The obtained dataset has been

randomly partitioned into two sets, where 70% of the volunteers was selected for

generating the training data and 30% the test data.

The sensor signals (accelerometer and gyroscope) were pre-processed by applying noise

filters and then sampled in fixed-width sliding windows of 2.56 sec and 50% overlap

(128 readings/window). The sensor acceleration signal, which has gravitational and body

motion components, was separated using a Butterworth low-pass filter into body

31

acceleration and gravity. The gravitational force is assumed to have only low frequency

components, therefore a filter with 0.3 Hz cutoff frequency was used. From each

window, a vector of features was obtained by calculating variables from the time and

frequency domain.

4.2.2 Attribute Information

For each record in the dataset it is provided:

→ Triaxial acceleration from the accelerometer (total acceleration) and the estimated

body acceleration.

→ Triaxial Angular velocity from the gyroscope.

→ A 561-feature vector with time and frequency domain variables.

→ Its activity label.

→ An identifier of the subject who carried out the experiment.

4.2.3 Feature Notes

→ Features are normalized and bounded within [-1, 1].

→ Each feature vector is a row on the text file.

→ The units used for the accelerations (total and body) are 'g's (gravity of earth →

9.80665 m/sec2).

→ The gyroscope units are rad/sec.

32

The file structure inside dataset are described in Table 1.

File name Information

activity_labels.txt Links the class labels with their activity

name.

features_info.txt Shows information about the variables used

on the feature vector.

features.txt List of all features.

README.txt Information about dataset details

test/X_test.txt Test set

test/y_test.txt Test labels

train/X_train.txt Training set

train/y_train.txt Training labels

Inertial Signals/body_acc_x_train.txt

Inertial Signals/body_acc_y_train.txt

Inertial Signals/body_acc_z_train.txt

The body acceleration signal obtained by

subtracting the gravity from the total

acceleration. Every row shows a 128

element vector. The same description

applies for the 'body_acc_y_train .txt' and

'body_acc_z_train .txt' files for the Y and Z

axis.

Inertial Signals/body_gyro_x_train.txt

Inertial Signals/body_gyro_y_train.txt

Inertial Signals/body_gyro_z_train.txt

The angular velocity vector measured by

the gyroscope for each window sample.

The units are radians/second. Every row

shows a 128 element vector. The same

33

description applies for the

‘body_gyro_y_train.txt' and

'body_gyro_z_train.txt' files for the Y and

Z axis.

Inertial Signals/total_acc_x_train.txt

Inertial Signals/total_acc_y_train.txt

Inertial Signals/total_acc_z_train.txt

The acceleration signal from the

smartphone accelerometer X axis in

standard gravity units 'g'. Every row shows

a 128 element vector. The same description

applies for the 'total_acc_y_train.txt' and

'total_acc_z_train.txt' files for the Y and Z

axis.

Table. 1 Dataset Feature Parameters

34

The Figure. 8 shows the hierarchy of the file structure inside dataset.

Figure. 8 Dataset File Structure

35

4.3 LSTM

 LSTM network was proposed by Jürgen Schmidhuber in 1997 [4], is a variant of

recurrent neural networks (RNNs). It has special inner gates that allow for consistently

better performance than RNN for time series. Compared with other networks, such as

CNN, restricted Boltzmann machine (RBM) and auto-encoder (AE), the structure of the

LSTM renders it especially good at solving problems involving time series, such as those

related to natural language processing, speech recognition, and weather prediction,

because its design enables gradients to flow through time readily.

4.3.1 Why LSTM?

4.3.1.1 CNN

The basic difference between a feed forward neuron and a recurrent neuron is shown in

Figure 9.

Figure. 9 Basic Feed-Forward and Recurrent cell

36

 The feed forward neuron has two weights which connects from his input to his

output. The recurrent neuron has also a connection from his output again to his input and

therefore it has three weights. When many feed-forward layers are connected together,

they form a Convolutional Neural Network (CNN). This third extra connection is called

feed-back connection and with that the activation can flow round in a loop.

When many feed forward and recurrent neurons are connected, they form a Recurrent

Neural Network (RNN). The major difference between CNN and RNN is that CNN is a

feed-forward neural network, while RNN is a recurrent neural network. In CNN, the

information only flows in the forward direction, while in RNN, the information flows

back and forth.

In mathematics, a convolution is a grouping function. In CNNs, convolution happens

between two matrices (rectangular arrays of numbers arranged in columns and rows) to

form a third matrix as an output. A CNN uses these convolutions in the convolutional

layers to filter input data and find information.

The University of Toronto researchers Alex Krizhevsky, Ilya Sutskever and Geoffrey

Hinton trained a deep convolutional neural network to classify the 1.2 million images

from the ImageNet Large Scale Visual Recognition Challenge contest, winning with a

record-breaking reduction in error rate [12]. This sparked today’s modern AI boom.

The convolutional layer does most of the computational works in a CNN. It acts as the

mathematical filters that help computers find edges of images, dark and light areas,

colors, and other details, such as height, width and depth.

There are usually many convolutional layer filters applied to an image.

Pooling layer: Pooling layers are often sandwiched between the convolutional layers.

They’re used to reduce the size of the representations created by CNN and reduce the

memory requirements, which allows for more convolutional layers.

37

Normalization layer: Normalization is a technique used to improve the performance and

stability of neural networks. There are different types of normalization available in CNN.

Those are Weight Normalization [38], Layer Normalization [39], and Batch

Normalization [40].

Fully connected layers: Fully connected layers connect every neuron in one layer to

every neuron in another layer. It is using the same principle as the traditional multi layer

perceptron neural network (MLP). The flattened matrix goes through a fully connected

layer to classify the images.

Then the back propagation is used to calculate the gradients of error with respect to all

the weights in the network. Back propagation is the method by which a neural network is

trained. It doesn't have much to do with the structure of the network, but rather implies

how input weights are updated. When training a feed forward network, the information is

passed into the network, and the resulting classification is compared to the known

training sample. If the network's classification is incorrect, the weights are adjusted

backward through the network in the direction that would give it the correct

classification. This is called the backward propagation of the training. So CNN is a feed-

forward network, but is trained through back-propagation.

CNNs are ideally suited for computer vision, but feeding those enough data can make

them useful in videos, speech, music and text as well.

4.3.1.2 Back Propagation

Algorithm 3. Back Propagation algorithm.

Consider a network with a single real input x and network function P. The derivative

P'(x) is computed in two phases: (1) Feed-forward: the input x is fed into the network.

The primitive functions at the nodes and their derivatives are evaluated at each node. The

derivatives are stored. (2)Back propagation: the constant 1 is fed into the output unit and

the network is run backwards. Incoming information to a node is added and the result is

38

multiplied by the value stored in the left part of the unit. The result is transmitted to the

left of the unit. The result collected at the input unit is the derivative of the network

function with respect to x.

Back propagation is based around four fundamental equations. Together, those equations

give us a way of computing both the error δl and the gradient of the cost function. The

four equations are shown below [41].

An equation for the error in the output layer, δL: The components of δL are given by

This is a very natural expression. The first term on the right, ∂C/∂aL
j, just measures how

fast the cost is changing as a function of the jth output activation. If, for example, C

doesn't depend much on a particular output neuron, j, then δL
j will be small, which is as

expected. The second term on the right, σ′(zL
j), measures how fast the activation function

σ is changing at zL
j.

An equation for the error δl in terms of the error in the next layer, δl+1:

where (wl+1)T is the transpose of the weight matrix wl+1 for the (l+1)th layer. When we

apply the transpose weight matrix (wl+1)T, we can think of it as moving the error

backward through the network, which gives some sort of measure of the error at the

output of the lth layer. This moves the error backward through the activation function in

layer l, which gives us the error δl in the weighted input to layer l.

39

By combining (BP2) with (BP1), the error δl can be computed for any layer in the

network.

An equation for the rate of change of the cost with respect to any bias in the

network:

The error δl
j is exactly equal to the rate of change ∂C/∂bl

j , which is the same as,

calculating error by (BP1) and (BP2) to compute δl
j . We can rewrite (BP3)

as ∂C/∂b = δ , where δ is being evaluated at the same neuron as the bias b.

An equation for the rate of change of the cost with respect to any weight in the

network:

This gives us to compute the partial derivatives ∂C/∂wl
jk in terms of the quantities δl and

al-1 .The equation can be rewritten as

where it's shown that, ain is the activation of the neuron input to the weight w, and δout is

the error of the neuron output from the weight w.

40

 If we look at the weight w, and the two neurons connected by that weight, we can depict

this as:

Figure. 10 Two Connected Neurons with weights

The above back propagation rules are summarized in Figure 11.

Figure.11 Back Propagation Rule

41

Figure. 12 Convolution Neural Network

The overall training process of the Convolution Network may be summarized as below:

Step1: We initialize all filters and parameters / weights with random values

Step2: The network takes a training image as input, goes through the forward

propagation step (convolution, ReLU and pooling operations along with forward

propagation in the Fully Connected layer) and finds the output probabilities for each

class.

 Let’s say the output probabilities for the boat image above are [0.2, 0.4,

0.1, 0.3]

 Since weights are randomly assigned for the first training example,

output probabilities are also random.

Step3: Calculate the total error at the output layer (summation over all 4 classes)

Total Error = ∑ ½(target probability– output probability)²

Step4: Use Backpropagation to calculate the gradients of the error with respect to

all weights in the network and use gradient descent to update all filter values /

weights and parameter values to minimize the output error.

42

 The weights are adjusted in proportion to their contribution to the total

error.

 When the same image is input again, output probabilities might now be

[0.1, 0.1, 0.7, 0.1], which is closer to the target vector [0, 0, 1, 0].

 This means that the network has learnt to classify this particular image

correctly by adjusting its weights / filters such that the output error is

reduced.

 Parameters like number of filters, filter sizes, architecture of the network

etc. have all been fixed before Step 1 and do not change during training

process – only the values of the filter matrix and connection weights get

updated.

Step5: Repeat steps 2-4 with all images in the training set.

The CNN have now been optimized to correctly classify images from the training

set.

4.3.1.3 RNN

The major limitation of CNN is that they accept a fixed-sized vector as input and produce

a fixed-sized vector as output which is the probabilities of different classes. Then these

models perform the mapping using a fixed amount of computational steps or the number

of layers in the model. They are enlisted as giant sequence of filters or neurons in these

hidden layers that all optimize toward efficiency in identifying an image. Therefore,

CNNs are called “feed-forward” neural networks because information is fed from one

layer to the next. However, RNN is trained to recognize patterns across time, while a

CNN learns to recognize patterns across space and hence a CNN learns to recognize

components in an image like lines, edges, curves, etc.

43

RNN offers two major advantages:

Store Information

The recurrent network can use the feedback connection to store information over time in

form of activations. This ability is significant for many applications. In the recurrent

networks, they have some form of memory.

Learn Sequential Data

The main reason for using RNN, they allow us to operate over sequences of vectors. In

Figure. 13, with RNN approach one to many, many to one and many to many inputs to

outputs are possible.

Figure. 13 RNN Sequential Data Learning Approach

In Figure. 13, each rectangle is a vector and arrows represent functions (e.g. matrix

multiply). Input vectors are in red, output vectors are in blue and green vectors hold the

RNN's state. The RNN can handle sequential data of arbitrary length. From left to right as

shown in Figure 11: (1) On the left the default feed forward CNN is shown, which can

just compute from fixed-sized input to fixed-sized output (e.g. image classification). (2)

44

Sequence output (e.g. image captioning takes an image and outputs a sentence of words).

(3) Sequence input (e.g. sentiment analysis where a given sentence is classified as

expressing positive or negative sentiment). (4) Sequence input and sequence output (e.g.

Machine Translation: an RNN reads a sentence in English and then outputs a sentence in

French). (5) Synced sequence input and output (e.g. video classification where we wish to

label each frame of the video).

Notice that in every case, there are no pre-specified constraints on the length sequences

because the recurrent transformation (green) is fixed and can be applied as many times as

required.

 Recurrent neural networks (RNNs) are connectionist models that capture the

dynamics of sequences via cycles in the network of nodes. Unlike standard CNNs, RNNs

retain a state that can represent information from an arbitrarily long context window.

RNNs combine the input vector with their state vector with a fixed (but learned) function

to produce a new state vector. All recurrent neural networks have the form of a chain of

repeating modules of neural network as shown in Figure 14. In standard RNNs, this

repeating module will have a very simple structure, such as a single tanh layer.

Figure. 14 Simple RNN Structure

45

Computational Power of Recurrent Networks

From the point of view of automata theory, all that is relevant is the identification of a set

of internal states which characterize the status of the device at a given moment in time,

together with the specification of rules of operation which predict the next state on the

basis of the current state and the inputs from the environment [42].

Theorem 1: Rational-weighted RNNs having boolean activation functions (simple

thresholds) are equivalent to finite state automata [43].

Proof: Proof shown in [43]

Theorem 2: Rational-weighted RNNs having linear sigmoid activation functions are

equivalent to Turing Machines [44].

Proof: Proof shown in [44]

Theorem 3: Real-weighted RNNs having linear sigmoid activation functions are more

powerful than Turing Machines. Siegelmann and Sontag noted that these networks are

not likely to solve polynomially NP-hard problems, as the equality “P=NP” in their

model implies the almost complete collapse of the standard polynomial hierarchy [45].

Proof: Proof shown in [45]

Theorem 4:

All Turing machines may be simulated by fully connected recurrent networks built of

neurons with sigmoidal activation functions [46].

In his model, all neurons synchronously update their states according to a quadratic

combination of past activation values. Proof: Proof shown in [46]

46

Long-Term Dependencies Problems

What happened to Recurrent Networks? One major drawback of RNNs is that the range

of contextual information is limited and the Backpropagation through time (BPTT) [47]

does not store information over long time period. This is noticeable in either vanishing or

exploding outputs of the network, which is known as vanishing gradient problem or

exploding gradient problem [48].

These problems arise during training of a deep network when the gradients are being

propagated back in time all the way to the initial layer. The gradients coming from the

deeper layers have to go through continuous matrix multiplications because of the chain

rule, and as they approach the earlier layers, if they have small values (<1), they shrink

exponentially until they vanish and make it impossible for the model to learn, this is the

vanishing gradient problem. While on the other hand if they have large values (>1) they

get larger and eventually blow up and crash the model, this is the exploding gradient

problem.

Dealing with Exploding Gradients

When gradients explode, it become NaN because of the numerical overflow, which

results irregular oscillations in training cost when the learning curve is plotted. A solution

to fix this is to apply gradient clipping; which places a predefined threshold on the

gradients to prevent it from getting too large, and by doing so, it doesn’t change the

direction of the gradients but it only changes its length.

4.3.1.4 LSTM

What makes LSTM so desirable? For dealing with Vanishing Gradients, Long Short-

Term Memory architecture (LSTM) is most popular and a widely used approach. This is

a different variant of RNN which was designed to make it easy to capture long-term

dependencies in sequence data. The standard RNN operates in such a way that the hidden

state activations are influenced by the other local activations closest to them, which

47

corresponds to a “short-term memory”, while the network weights are influenced by the

computations that take place over entire long sequences, which corresponds to a “long-

term memory”. Hence the RNN was redesigned so that it has an activation state that can

also act like weights and preserve information over long distances, hence the name “Long

Short-Term Memory” [4].

4.3.1.5 Distributed LSTM

What is the need of distributed machine for LSTM? Recurrent neural networks (RNNs)

have been widely used for processing sequential data. However, RNNs are commonly

difficult to train due to the well-known gradient vanishing and exploding problems and

hard to learn long-term patterns. Long short-term memory (LSTM) and gated recurrent

unit (GRU) were developed to address these problems [49].

The LSTM architectures are usually trained in a batch setting in the architecture, where

all data instances are present and processed together. However, for applications involving

big data, storage issues may arise due to keeping all the data in one place. Additionally,

in certain frameworks, all data instances are not available beforehand since instances are

received in a sequential manner, which precludes batch training. As every second the data

size is growing exponentially, in coming years most big corporations will suffer from

computational power and storage issues due to large amount of data. As an example, in

tweet emotion recognition applications, the systems are usually trained using an

enormous amount of data to achieve sufficient performance, especially for agglutinative

languages [50].

 In the common distributed architectures, the whole data is distributed to different nodes

but the trained parameters are merged later at a central node. However, this centralized

approach requires high storage capacity and computational power at the central node.

Additionally, centralized strategies have a potential risk of failure at the central node. To

circumvent these issues, we distribute both the processing as well as the data to all the

48

nodes and allow communication only between neighboring nodes, hence, we remove the

need for a central node. In particular, each node sequentially receives a variable length of

data sequence with its label and exchanges information only with its neighboring nodes

to train the common LSTM parameters. There are two approaches to achieve this

architecture. By the use of parameter server framework, this scalable distributed deep

learning approach can be achieved where both data and workloads are distributed over

worker nodes, while the server nodes maintain global shared parameters, represented as

dense or sparse vectors and matrices. Here the worker nodes process data and compute

local gradients on a mini-batch. They then send push (key, gradient) messages to the

servers. Those process the updates asynchronously. When needed, the workers pull them

back with a pull (key) request. A lot of the infrastructure is borrowed from distributed

(key, value) storage such as memcached. Memcached is a high-performance, distributed

memory object caching system, generic in nature, but originally intended for use in

speeding up dynamic web applications by alleviating database load[51].The framework

manages asynchronous data communications between nodes and supports flexible

consistency models, elastic scalability and continuous fault tolerance[8].

 The other approach is synchronous distributed stochastic gradient descent (SGD), which

is known as distributed synchronous SGD. In practice, each training node performs the

forward-backward pass on different batches sampled from the training dataset with the

same network model. The gradients from all nodes are summed up to optimize their

models. By this synchronous step, models of different nodes are always the same during

the training. The aggregation step can be achieved by performing the All-reduce

operation on the gradients among all nodes and to update the parameters on each node

independently [52].

4.3.1.5.1 Synchronous all-reduce SGD

In traditional synchronous all-reduce SGD, there are two alternating phases proceeding in

lock-step:(1) each node computes its local parameter gradients, and (2) all nodes

49

collectively communicate all-to-all to compute an aggregate gradient, as if they all

formed a large distributed minibatch.

The second phase of exchanging gradients forms a barrier and is the communication-

intensive phase, usually implemented by an eponymous all-reduce operation. The time

complexity of an all-reduction can be decomposed into latency-bound and bandwidth-

bound terms. Although the latency term scales with O (log (p)), there are fast ring

algorithms which have bandwidth term independent of p [52]. With modern networks

capable of handling bandwidth on the order of 1–10 GB/s combined with neural network

parameter sizes on the order of 10–100 MB, the communication of gradients or

parameters between nodes across a network can be very fast.

Instead, the communication overhead of all-reduce results from its use of a

synchronization barrier, where all nodes must wait for all other nodes until the all-reduce

is complete before proceeding to the next stochastic gradient iteration. This directly leads

to a straggler effect where the slowest nodes will prevent the rest of the nodes from

making the progress. [53]

Algorithm 4. Synchronous all-reduce SGD

Initialize θ0, i ← θ0

for t ∈ {0. . . T} do

 ∆θt,i ← −αt∇fi (θt,i ; Xt,i) + µ∆θt-1

 ∆θt ← all-reduce-average (∆θt,i)

 θt+1,i ← θt,i + ∆θt

end for

50

4.3.2 Baseline LSTM

LSTM is an extension of recurrent neural networks. Due to its special architecture, which

combats the vanishing and exploding gradient problems, it is good at handling time series

problems up to a certain depth. The input gate, the forget gate, and the output gate of LSTM

are designed to control what information should be forgotten, remembered, and updated.

Figure. 15 LSTM Forget Gate

As shown in Figure. 15, First there is a need to forget old information, which involves the

forget gate. In the first step of LSTM forget gate looks at ht-1 and xt to compute the

output ft which is a number between 0 and 1 for each cell state number. This is multiplied

by the cell state Ct-1 and yield the cell to either forget everything or keep the information

which is based on zero or one. For example a value of 0.5 means that the cell forgets 50%

of its information. It is considered a good practice to initialize these gates to a value of 1,

or close to 1, so as to not impair training at the beginning.

51

Figure. 16 LSTM Input Gate

As shown in Figure. 16, the next step is to determine what new information needs to keep

in memory with an input gate. This has two parts. First, a sigmoid function called the “input

gate” decides which values need to update. Next, a tanh function creates a vector of new

candidate values, Ct, which could be added to the state. From that, it is possible to update

the old cell state, to the new cell state, Gating is a method to selectively pass the needed

information.

Figure. 17 LSTM Processing Data

52

As shown in Figure. 17, now LSTM will update the old cell state Ctt-1, into the new cell

state Ct. It multiply the old state by ft , forgetting the things it decided to forget earlier. Then

it adds it∗Ct. This is the new candidate value, scaled by LSTM’s decision to update each

state value.

Figure. 18 LSTM Output Gate

Finally the output value has to be computed, which is done by multiplying ot with the tanh

of the result of the previous step, which yields to ht=ot∗tanh(Ct) and

ot=σ∗(Wo [ht-1,xt]+bo). Finally, it decides which information should be output to the layer

above with an output gate.

In the LSTM cell, each parameter at moment t can be defined as follows:

 ft = σ (Wf [ht-1 , xt] + bf)

 it = σ (Wi [ht-1 , xt] + bi)

 Ct = tanh (Wc [ht-1, xt] + bc)

 Ct = ft * Ct-1 + it * Ct
 ot = σ (Wo [ht-1 , xt] + bo)

 ht = ot * tanh (Ct)

53

Figure. 19 The unfolded structure of one-layer baseline LSTM

In Figure 19, We define the input set as {x0,x1,…,xt,xt+1,...} and the output set as

{y0,y1,…,yt,yt+1,...} and hidden layers as {h0,h1,…,ht,ht+1,...}. Then, U, W, V denote weight

metrics from the input layer to the hidden layer, from the hidden layer to the hidden layer,

and from the hidden layer to the output layer respectively. Baseline LSTM structure

operating through the time axis, from left to right. The transfer process of the network can

be described as follows: the input tensor is transformed along with the tensor of the hidden

layer (at the last stage), to the hidden layer by a matrix transformation. Then, the output of

the hidden layer passes through an activation function to the final value of the output layer.

Formally, outputs of the hidden layer and output layer can be defined as follows:

54

 g(Uxi + bi
h) where I = 0

 hi = g(Uxi + Whi-1 + bi
h) where i = 1,2,…

 yi = g(Vhi + bi
y) where i = 0,1,...

4.3.3 Bidirectional LSTM

Baseline LSTM cells predict the current status based only on former information. It is clear

that some important information may not be captured properly by the cell if it runs in only

one direction. Bidirectional LSTM have been successfully applied for emotion recognition

from low level frame-wise audio features which requires modeling of long range context

along both input directions [52].

Figure. 20 The structure of single layer bidirectional LSTM

55

As shown in Figure. 20, the bidirectional layer gets information from vertical direction

(lower layer) and horizontal direction (past and future) from two separate hidden layers,

and finally outputs the processed information for the upper layer. There are forward

sequences h⃗ from left to right with green arrows and backward sequences ←h from right

to left with red arrows in the hidden layer. For the moment, t (0, 1, 2...) the hidden layer

and the output layer can be defined as followed.

 (→) ht = g(Uh xt + Wh ht-1 + bh)

 (←) ht = g(Uh xt + Wh ht-1 + bh)

 yt = g(Vhht
→ + Vh ht

← + by)

4.3.4 Residual LSTM

The Microsoft Research Asia (MSRA) team built a 152-layer network, On the ImageNet

dataset the team evaluate residual nets with a depth of up to 152 layers—8× deeper than

VGG nets [54] but still having lower complexity. This result won the 1st place on the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2015 classification task.

The depth of representations is of central importance for many visual recognition tasks.

A residual network [54] provides an identity mapping by shortcut paths. Since the identity

mapping is always on, function output only needs to learn residual mapping. Formulation

of this relation can be expressed as:

y = F(x; W) + x

where y is an output layer, x is an input layer and F(x; W) is a function with an internal

parameter W. Without a shortcut path, F(x; W) should represent y from input x, but with

an identity mapping x, F(x; W) only needs to learn residual mapping, y − x. As layers are

stacked up, if no new residual mapping is needed, a network can bypass identity mappings

without training, which could greatly simplify training of a deep network.

56

As the network deepens, the research emphasis shifts on how to overcome the obstruction

of information and gradient transmission. The MSRA uses residual networks with the main

idea that it is easier to optimize the residual mapping than to optimize the original,

unreferenced mapping. An important advantage of residual networks is that they are much

easier to train because the gradients can be passed through the layers more directly

with the addition operator that enables them to bypass some layers that would have

otherwise been restrictive. This enables both better training and a deeper network, because

residual connections do not impede gradients and still contribute to refining the output of

a highway layer composed of such residual connections [55].

Skip connections made the training of very deep networks possible and have become an

indispensable component in a variety of neural architectures. The difficulty of training deep

networks is partly due to the singularities caused by the non-identifiability of the model.

Several such singularities have been identified in previous works: (1) overlap singularities

caused by the permutation symmetry of nodes in a given layer, (2) elimination singularities

corresponding to the elimination, i.e. consistent deactivation, of nodes, (3) singularities

generated by the linear dependence of the nodes. These singularities cause degenerate

manifolds in the loss landscape that slow down learning. We argue that skip connections

eliminate these singularities by breaking the permutation symmetry of nodes, by reducing

the possibility of node elimination and by making the nodes less linearly dependent.

Moreover, for typical initializations, skip connections move the network away from the

“ghosts” of these singularities and sculpt the landscape around them to alleviate the

learning slow-down. These hypotheses are supported by evidence from simplified models,

as well as from experiments with deep networks trained on real-world datasets. [56]

57

Figure. 21 The structure of single layer residual LSTM

The lower information can transmit to upper layer directly through a highway, which

increases the freedom of the information flowing. The highway structure containing skip

connections can connect many supplementary n (n=0, 1, 2…) layers in height before the

bottleneck. When n equals 0, there is no residual connection: it becomes like the baseline

deep-stacked LSTMs layers. The output of the hidden layer i (i=1,2,...L)can be defined as

follows:

 h1 = σ(W1x + b1) where i = 1

 hi = σ(Wi hi-1 + bi) + hi -1 where i = 2,3,…,L-1

 y = σ(Wy hi-1 + by) + hi -1 where i = L

58

During the code implementation, indexing in the configuration file starts at one rather than

zero because we included the count of the first layer that acts as a basis before the residual

cells. The same counting rule applies for indicating how many blocks of residual highway

layers are stacked one on top of the other.

4.3.5 Deep Residual Bidirectional LSTM

The deep bidirectional LSTM (BDLSTM) architectures are networks with several

bidirectional stacked LSTM hidden layers, in which the output of a LSTM hidden layer

will be fed as the input into the subsequent LSTM hidden layer. This stacked layers

mechanism enhances the power of neural networks [57]. Previous research [58] has shown

that, the BDLSTM takes the spatial time series data as the input and predict future speed

values for one time-step. The BDLSTM is also capable of predicting values for multiple

future time steps based on historical data. When feeding the spatial-temporal information

of the traffic network to the BDLSTMs, both the spatial correlation of the speeds in

different locations of the traffic network and the temporal dependencies of the speed values

can be captured during the feature learning process. In this regard, the BDLSTMs are very

suitable for being the first layer of a model to learn more useful information from spatial

time series data. When predicting future speed values, the top layer of the architecture only

needs to utilize learned features, namely the outputs from lower layers, calculates

iteratively along the forward direction and generates the predicted values. But as

complexity and volume of data grows the model may not work due to the obstruction of

information and gradient transmission as discussed in residual LSTM section. In general,

gradient vanishing is a widespread problem for deep networks. Then there is a need for a

hybrid LSTM model which would work on those cases. The residual, bidirectional, and

stacked layers (hence, the name “Deep Residual Bidirectional LSTM” (RBDLSTM)) [59]

help counter this problem, because some bottom layers would otherwise be too hard to

optimize when using backpropagation.

59

The RBDLSTM layer contains a BDLSTM layer as the first feature-learning layer and a

LSTM layer as the last layer. For sake of making full use of the input data and learning

complex and comprehensive features, the RBDLSTM includes one or more middle

BDLSTM layers along with residual LSTM layers. These architectures can take formation

of 2 x 2 layers, 3 x 3 layers or 4 x 4 layers depending on the complexity nature of the issues

along with learning rate, where there would be n residual layers which contains each n

bidirectional hidden layers. Combined with batch normalization on the top of each residual

layer, residual connections act as shortcut for gradients. It prevents restrictions in the

hidden layer feature space from being too complex and avoids outlier values at test time,

against overfitting.

In Figure 22, the information flows bidirectional fashion in the horizontal direction

(temporal dimension) and unidirectional fashion in the vertical direction (depth

dimension). With the exception of the input and output layers, there are 2 hidden layers

which have residual connection inside (hence, called “residual layer”). Moreover, each

residual layer contains 2 bidirectional layers. The network in Figure. 22 demonstrated

2 x 2 architecture, which can also be thought of as 8 LSTM cells in sum working as a

network. In our network, the activity function is unified with ReLU, because it always

outperforms with deep networks to counter gradient vanishing. Although the output is a

tensor for a given time window, the time axis has been crunched by the neural network.

That is, we need only the last element of the output and can discard the others. Thus, only

the gradient from the prediction at the last time step is applied. This also causes a LSTM

cell to be unnecessary: the uppermost backward LSTM in the bidirectional pass. Hopefully,

this is not of great concern because TensorFlow should evaluate what to compute and what

not to compute. Additionally, the training dataset should be shuffled during the training

process. The state of the neural network is reset at each new window for each new

prediction.

60

Figure. 22 The structure of 2 x 2 residual bidirectional LSTM

61

Figure. 23 The residual bidirectional LSTM components

The residual bidirectional LSTM is the hybrid of all the above layers, shown below the

output of hidden layer and output layer in a series as follows:

Stacked LSTM without residual connections:

Let LSTMi and LSTMi+1 be the ith and (i+1)th LSTM layers in a stack, whose parameters

are Wi and Wi+1 respectively. At the tth time step, for the stacked LSTM without residual

connections, we have:

 ct
i , mt

i = LSTMi (ct-1
i , mt-1

i , xt
i-1 ; Wi)

 xt
i = mt

i ,

 ct
i+1 ,mt

i+1 = LSTMi+1(ct-1
i+1 , mt-1

i+1 , xt
i ; Wi+1)

where xt
i is the input to LSTMi at time step t, and mt

i and ct
i are the hidden states and

memory states of LSTMi at time step t, respectively.

62

Stacked LSTM with residual connections:

With residual connections between LSTMi and LSTMi+1, the above equations become:

 ct
i , mt

i = LSTMi (ct-1
i , mt-1

i , xt
i-1 ; Wi)

 xt
i = mt

i + xt
i-1 ,

 ct
i+1 ,mt

i+1 = LSTMi+1(ct-1
i+1 , mt-1

i+1 , xt
i ; Wi+1)

Residual connections greatly improve the gradient flow in the backward pass, which allows

us to train very deep networks.

Stacked LSTM with residual bidirectional connections:

In an LSTM stack with residual connections there are two accumulators: ct
i along the time

axis and xt
i along the depth axis. In theory, both of the accumulators are unbounded, but in

practice, we noticed their values remain quite small. For inference, we explicitly constrain

the values of these accumulators to be within [-δ, δ] to guarantee a certain range that can

be used for calculation purpose later. The forward computation of an LSTM stack with

residual connections is modified to the following:

 ct
'i , mt

i = LSTMi (ct-1
i , mt-1

i , xt
i-1 ; Wi)

 ct
'i = max(−δ, min(δ, ct

'i))

 xt
'i = mt

i + xt
i-1 ,

 xt
i = max(−δ, min(δ, xt

'i))

 ct
'i+1 ,mt

i+1 = LSTMi+1(ct-1
i+1 , mt-1

i+1 , xt
i ; Wi+1)

 ct
i+1 = max(−δ, min(δ, ct

'i+1))

It can be quantized further with effective quantization methods by reducing bit-widths of

weights, activations and gradients of a neural network which can shrink its storage size and

63

memory usage, and also allow for faster training and inference by exploiting bitwise

operations.[60]. This area is not researched in this thesis.

64

CHAPTER V

TESTBED SETUP

In this section, we are going to set up the hardware for this research and run the

simulation programs to verify that the platform is ready for the research. This introduces

distributed machine learning where we need cluster of machines, which are either

connected physically with each other or connected by the web networks. Here we built a

Raspberry Pi cluster which consists of 16 Raspberry Pi 3 B+ models connected together

by a switch hub where the switch is connected to LAN of the research lab. The next

platfom we built a NVIDIA GPU cluster which consists of 3 GPUs Tesla K40c, Quadro

P5000 and Quadro K620 on top of a multicore CPU with 32 GB RAM and 2 TB SSD

with 10 TB HDD space. We presented every details of set up with simulation results in

below section.

5.1 NVIDIA GPU Test Bed Setup

We use Ubuntu 18.04 LTS 64-bit version for our development environments to perform

the experiments. We use one multicore CPU machine with enough memory and disk

space to support 3 GPUs named Tesla K40c, Quadro P5000 and Quadro K620. In this

experiment, we have used NVIDIA Maximus formation by using the computational

power of NVIDIA Tesla GPU and visualization power of NVIDIA Quadro GPU. This is

the most efficient formation recommended by NVIDIA for deep learning peforamnce.

The cluster of this GPUs is connected by 100 Mbps LAN. Hardware configuration of the

machine along with NVIDIA GPUs are listed in Table 2, 3 and the details workstation set

65

up is described in APPENDIX A.

Processor Dual Intel Xeon E5-2609 v4, 8-Core, 1.7

Ghz, 20MB L3 Cache, 85 Watts

Memory 32GB DDR4- 2400MHz (4 x 8GB)

Motherboard Asus Z10PE-D16 WS Intel Xeon

Power Supply 750 Watt EGVA SuperNOVA, 80Plus

Bronze Certified

Hard Drive 1 2TB Samsung 960 Pro PCIe 3.0 SSD

Hard Drive 2 2 x 4 TB 7200rpm SATA 600 with 64MB

Cache

GPUs Tesla K40c, Quadro P5000, Quadro K620

 Table. 2 Hardware configuration of CPU

Device 0: Quadro P5000

CUDA Driver Version / Runtime Version 10.0 / 10.0

CUDA Computation Capability Version 6.1

Total amount of global memory 16279 MBytes (17069309952 bytes)

Total CUDA Cores 2560

Multiprocessors (20) Multiprocessors, (128) CUDA Cores

GPU Max Clock rate 1734 MHz (1.73 GHz)

Memory Clock rate 4513 Mhz

66

Memory Bus Width 256-bit

Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536),

3D=(16384, 16384, 16384)

Device 1: Tesla K40c

CUDA Driver Version / Runtime Version 10.0 / 10.0

Total amount of global memory 11441 MBytes (11996954624 bytes)

Total CUDA Cores 2880

Multiprocessors (15) Multiprocessors, (192) CUDA Cores

GPU Max Clock rate 745 MHz (0.75 GHz)

Memory Clock rate 3004 Mhz

Memory Bus Width 384-bit

Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536),

3D=(4096, 4096, 4096)

Device 2: Quadro K620

CUDA Driver Version / Runtime Version 10.0 / 10.0

Total amount of global memory 2000 MBytes (2096955392 bytes)

Total CUDA Cores 384

Multiprocessors (3) Multiprocessors, (128) CUDA Cores

GPU Max Clock rate 1124 MHz (1.12 GHz)

Memory Clock rate 900 Mhz

Memory Bus Width 128-bit

Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536),

67

3D=(4096, 4096, 4096)

Warp size (same for all) 32

Table. 3 Hardware configuration of GPUs

As shown in Table. 3, the machine is installed with CUDA 10.0.130 along with

compatible cuDNN 7.5 for the TensorFlow and PyTorch.

The details process of installation of CUDA and cuDNN are mentioned in APPENDIX –

A. Here we have mentioned the verification process after installation.

Recommended Actions for Installation Verifications

1. Check the .bashrc after reboot.

2. Verify the installed driver version. If driver is installed correctly it will be loaded by

the below command.

$ cat /proc/driver/nvidia/version

 Figure.24 NVIDIA Driver Version

3. Verify the CUDA Toolkit Version by the below command.

$ nvcc -V

68

Figure.25 CUDA Toolkit Version

4. Compile the CUDA Examples

 In order to modify, compile and run samples it must be installed with write permission.

Please run the script which is already available in the CUDA installed directory.

cuda-install-samples-10.0.sh ~

which will copy the samples to the home directory. Once the copying is finished please

run the below command to compile the samples.

cd ~/NVIDIA_CUDA-10.0_Samples/5_Simulations/nbody

make ./nbody

5. Run the Binaries

After compilation, run the deviceQuery under Samples folder, by below command.

./deviceQuery

If the CUDA software is installed and configured correctly the output of the deviceQuery

would show pass statement as shown below.

 deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.0, CUDA Runtime

Version = 10.0, NumDevs = 3

Result = PASS

Run the bandwidthTest for verification by below command.

./p2pBandwidthLatencyTest

69

If the CUDA software is able to connect to other GPU drivers then the below matrix will

come in result page which validates the successful installation of CUDA.

P2P=Enabled Latency (P2P Writes) Matrix (us)

 GPU 0 1 2

 0 1.27 15.42 14.41

 1 14.54 4.28 16.47

 2 13.74 16.19 3.75

 CPU 0 1 2

 0 6.07 14.02 13.95

 1 14.14 5.99 13.97

 2 13.95 13.80 6.10

Test passed!

6. Verify the cuDNN validation test after successful installation of cuDNN.

To verify that cuDNN is running properly, compile the mnistCUDNN sample located in

the /usr/src/cudnn_samples_v7 directory in the debian file installation folder.

Steps:

1. Copy the cuDNN sample to a writable path.

$cp -r /usr/src/cudnn_samples_v7/ $HOME

2. Go to the writable path.

70

$ cd $HOME/cudnn_samples_v7/mnistCUDNN

3. Compile the mnistCUDNN sample

$make clean && make

4. If face any issues, open the file /usr/include/cudnn.h & change below details & save it.

#include "driver_types.h" → #include <driver_types.h>

5. Run the mnistCUDNN sample.

$./mnistCUDNN

6. If cuDNN is properly installed and running on you Linux machine you will see the

similar message as above.

Test passed!

The above complete test results files are provided in the APPENDIX -A.

After above installation now the machine is compatible for running deep learning models

but still clustering is ready to set.

There are basically two options how to do multi-GPU programming. First option to do it

in CUDA and have a single thread and manage the GPUs directly by setting the current

device and by declaring and assigning a dedicated memory-stream to each GPU or the

other options is to use CUDA_Aware_MPI where a single thread is spawned for each

GPU and all communication and synchronization is handled by MPI.

We have choose to go by the first option where the clustering is done based on

cudaSetDevice query.

71

Figure.26 GPU Memory Array

The result of the NVIDIA Maximus cluster formation is shown below.

 < multiple host threads can use ::cudaSetDevice() with device simultaneously >

> Peer access from Quadro P5000 (GPU0) -> Tesla K40c (GPU1) : Yes

> Peer access from Quadro P5000 (GPU0) -> Quadro K620 (GPU2) : Yes

> Peer access from Tesla K40c (GPU1) -> Quadro P5000 (GPU0) : Yes

> Peer access from Tesla K40c (GPU1) -> Quadro K620 (GPU2) : Yes

> Peer access from Quadro K620 (GPU2) -> Quadro P5000 (GPU0) : Yes

> Peer access from Quadro K620 (GPU2) -> Tesla K40c (GPU1) : Yes

We have implemented the Synchronous All-reduce approach which is the default

behavior of the distributed TensorFlow, MirroredStrategy API.

Both of these examples implement the All-reduce approach, however they can be easily

extended to other approaches. Here 3 GPUs are working as actors to mirror the task

which is taken care by TensorFlow in Figure. 27.

72

Figure.27 Distributed TensorFlow API

5.2 Cluster of Raspberry Pis Setup

We have used Raspberry Pi 3 Model B+ in this experiment. There is a perfect reason to

use raspberry pi in this research.

The raspberry pi board comprises a program memory (RAM), processor, graphics chip,

CPU, GPU, Ethernet port, GPIO pins, Xbee socket, UART, power source connector and

various other interfaces for other external devices. We have added a 32 GB flash memory

SD card which could be used as storage in each pi. So that raspberry pi board will boot

from this SD card similarly as a PC boots up into windows from its hard disk. This tiny

computer having all the qualities with very cost effective price, a perfect candidate to

build large clusters for research purpose.

Hardware configuration of Raspberry Pi is listed in the Table. 4.

There are 16 Pi’s used to make this cluster. The Raspbian Stretch Kernel Version 4.14 is

installed in each Pi. TensorFlow 1.8.0 the .whl file version is installed in each Pi. To

create the sharing folder between the Pis NFS server and client model is implemented as

it is supported by Linux terminal.

73

Processor Broadcom BCM2837B0, Cortex-A53,

 64-bit SoC @ 1.4GHz

Memory 1GB LPDDR2 SDRAM

Hard Drive 1 Samsung 32 GB Flash Drive

Power Supply 5V/2.5A DC via micro USB connector

Integrated Wi-Fi 2.4GHz and 5GHz

Ethernet speed 300Mbps

Table. 4 Hardware configuration of Raspberry Pi 3 Model B+

The details of creating the sharing server and client structure is described below.

Step-1:

Create NFS server in one of the pi which is known as master pi. Before setting up the

NFS there is some prerequisites which is good to follow.

Login to the Pi configuration management file by the below command.

sudo raspi-config

1. Update the pi software.

2. Rename each pi from the default name to rpi# as per the nodes going to be used in the

cluster. You can do that from the configuration file itself and restart the pi.

3. Enable the hostname in each pi.

4. Change the password of default to your own convenient one.

5. Change the assigned memory for GPU to minimum.

74

6. Change the assigned memory for CPU to maximum.

7. In raspi-config, change (3. Boot Options > B2 Wait for Network at Boot) from “No” to

“Yes”. This will ensure that networking is available before the fstab file mounts the NFS

client.

8. In raspi-config, enable the ssh mode.

Step-2: (NFS Server)

Install the NFS server in the master node by the below command.

sudo apt-get install nfs-common nfs-server -y

sudo mkdir /home/pi/Desktop/nfsserver

sudo chmod -R 777 /home/pi/Desktop/nfsserver

This will create a server folder named nfsserver in the master pi.

Step-3:

Validate the NFS Version by the below command.

rpcinfo -u localhost nfs

Step-4:

Add the nfsserver folder to the localhost so that when other Pi add something to the

folder it will be automatically updated by the server. Please use below commands.

/home/pi/Desktop/nfsserver 192.168.1.1/26(rw,sync,no_subtree_check)

where nfsserver folder will read,write,sync with no sub tree check.

Step -5: (NFS Client)

Install the NFS client in each of the Raspberry Pi node so that we will communicate each

other by the RPC protocol which NFS uses internally to communicate.

75

1. Install the NFS client by the command.

sudo apt-get install nfs-common -y

2. Make a client directory in the Pi.

sudo mkdir -p /home/pi/Desktop/nfs

3. Give permission to the directory.

sudo chown -R pi:pi /home/pi/Desktop/nfs

4. Mount the directory to the NFS server.

sudo mount 192.168.1.26:/home/pi/De sktop/nfsserver /home/pi/Desktop/nfs

sudo nano /etc/fstab 192.168.1.26:/home/pi/Desktop/nfsserver /home/pi/Desktop/nfs

nfs rw 0 0

5. Verify the mount.

nfsstat -m

Step-6:

Restart the NFS client service so that the server will recognize the client.

sudo /etc/init.d/nfs-common restart

Step-7:

Once NFS client is installed in all the Raspberry Pi’s restart the NFS server to verify that

it is connecting to all the clinets.

sudo /etc/init.d/nfs-kernel-server restart

The below snapshot shows after NFS client server model successfully installed in all the

machines.

76

Figure.28 Raspberry Pis NFS connection

The directory is always available to all the Raspberry Pi workers along with master which

having both client and server, the status of NFS is shown below in the snapshot.

Figure.29 NFS Status

Issues on NFS Setup:

NFS server on default only allows 15 Raspberry Pi nodes as client to connect to the

server. This is the default NFS property. To increase the port please follow the below

steps.

Step-1:

Go to the nfs-kernel-server file in command prompt and change to larger number as

required.

77

sudo nano /etc/default/nfs-kernel-server

RPCNFSDCOUNT = 16

RPCMOUNTDOPTS= " --manage-gids --no-nfs-version 3"

Step-2:

Change the following things in nfs-utils file.

sudo nano /run/sysconfig/nfs-utils

RPCNFSDARGS = “16”

Step-3:

Create a directory named “sunrpc.conf” in the below location and add details as

provided below.

1. Go to the directory: /etc/modprobe.d

2. Create a file named: sunrpc.conf

3. Add the contents in the above file to allow the clients # in the NFS server:

options sunrpc tcp_slot_table_entries=128

options sunrpc tcp_max_slot_table_entries=128

5.3 Simulation using Raspberry Pis Cluster

The simulation is done with 16 Raspberry Pi cluster where 15 nodes work as worker

nodes and one works as master node as well worker node. In this cluster each task is

associated with a server. This simulation is the Monte Carlo simulation which use 16

Raspberry Pi cluster distributed TensorFlow environment to give the result of the value

of pi.

The program having two parts, one is server program server.py which is running in the

78

NFS server where each client having access and the other is the client part, client.py

which calculates the value of Pi by using a Monte Carlo method. The program generates

random points between (-1, -1) to (1, 1) in a circle of radius 1 inscribed in a square.

The source code of the Program is given in APPENDIX-E.

Distributed TensorFlow works a bit like a server-client model. The idea is that you create

a whole bunch of workers that will perform the heavy lifting. You then create a session

on one of those workers, and it will compute the graph, possibly distributing parts of it to

other clusters on the server. In order to do this, the main worker or the master, needs to

know about the other workers. This is done via the creation of a ClusterSpec as shown in

Figure. 30, which you need to pass to all workers. A ClusterSpec is built using a

dictionary, where the key is a “job name”, and each job contains many workers.

The code is taken from the simulation program where each Raspberry Pi node ip is

entitled in the taskList and cluster creates a working cluster by using API

tf.train.ClusterSpec where each job is specified as a sparse mapping from task indices to

network addresses.

79

Figure.30 TensorFlow Cluster API

In the Figure. 31, the TensorFlow API tf.device is used which is used to create a device

context such that all the operations within that context will have the same device

assignment instead of automatically selecting available devices by the program to

participate in the computational process. It allows the user to select an user specified

device for the operation.

Figure. 31 TensorFlow Device API

80

TensorFlow uses a dataflow graph to represent your computation in terms of the

dependencies between individual operations. This leads to a low-level programming

model in which you first define the dataflow graph, then create a TensorFlow session to

run parts of the graph across a set of local and remote devices. As shown in Figure. 32,

TensorFlow uses tf.Session API to create a session object which encapsulates the

environment in which Operation objects are executed, and Tensor objects are evaluated.

In simple terms, the session allocates memory to store the current value of the variable.

tf.global_variables_initializer() initializes all the variables of the TensorFlow before

using it in the operations.

Figure.32 TensorFlow Session API

In Figure. 33, the TensorFlow API tf.train.Server() is used as an in-process TensorFlow

server, for use in distributed training. A tf.train.Server instance encapsulates a set of

devices and a tf.Session target that can participate in distributed training. A server

belongs to a cluster (specified by a tf.train.ClusterSpec), and corresponds to a particular

task in a named job. The server can communicate with any other server in the same

cluster.

Figure. 33 TensorFlow Server API

81

Result

Sample Size Time 1 Time 2 Time 4 Time 8

Time

16

10,000,000 1.495 1.18 1.32 1.961 2.34

20,000,000 2.594 1.704 1.572 2.087 2.48

30,000,000 3.673 2.284 1.848 2.299 2.57

40,000,000 4.758 2.818 2.09 2.35 2.63

50,000,000 6.561 3.373 2.391 2.48 2.79

60,000,000 7.713 3.91 2.648 2.628 2.593

70,000,000 N/A 4.451 2.923 2.782 2.421

80,000,000 N/A 4.998 3.218 2.953 2.561

90,000,000 N/A 5.678 3.482 3.147 2.842

100,000,00

0
N/A

6.103 3.741 3.234 2.611

Table. 5 Raspberry Pi Cluster Monte Carlo Simulation

As the cluster size increases, the program is computing faster for larger sample sizes but

slower for smaller sample sizes. For example, for sample size 100 million, the size 8

cluster is faster than the size 2 cluster (3.234s vs 6.103s). However, for sample size 10

million, the size 2 cluster is faster than the size 8 cluster (1.180s vs. 1.961s). The slow

down for smaller sample sizes may due to overhead for the tasks to communicate with

each other.

82

Figure. 34 Pi Cluster Execution Graph

5.4 Notes on TensorFlow Setup

The simulation program using TensorFlow built on the distributed TensorFlow APIs

where GPU cluster is used. We have going to discuss import APIs used in this research

work.

Figure. 35 TensorFlow GPU Growth API

By default, TensorFlow requests nearly all of the GPU memory of all GPUs to avoid

memory fragmentation (since GPU has much less memory, it is more vulnerable to

fragmentation). To avoid this issue, we have used the API

83

config.gpu_options.allow_growth = True as shown in Figure. 35, where TensorFlow

can grow its memory gradually when desired. In Figure. 13 it’s observed that while

computing the 4 x 4 stacked residual bidirectional layer for dataset with 256 hidden

layers which is the most complex iteration in our experiment it uses only one part of the

GPU memory.

In the Figure. 35, we have use the API allow_soft_placement= True , it would let

TensorFlow to automatically choose an existing and supported device to run the

operations in case the specified one doesn't exist, we have set allow_soft_placement to

True in the configuration option when creating the session. With this API, our program is

compatible to run in machines without having GPU clusters without giving any errors.

StreamExecutor is a unified wrapper around the CUDA and OpenCL host-side

programming models (runtimes). It lets host code target either CUDA or OpenCL devices

with identically-functioning data-parallel kernels. StreamExecutor is currently used as the

runtime for the vast majority of Google's internal GPGPU applications, and a snapshot of

it is included in the open-source TensorFlow project, where it serves as the GPGPU

runtime. As shown in Figure. 36 and 37, it inspects the capabilities of a GPU-like device

at runtime and manages multiple devices.

Figure. 36 GPU StreamExecutor

Figure. 37 GPU Device Selection

84

Figure. 38 Distributed TF Multi GPU

As shown in Figure. 38, for distributed TensorFlow we have used the API,

tf.contrib.distribute.MirroredStrategy in our program. This strategy uses one replica

per device and sync replication for its multi-GPU version. When cluster_spec is given by

the configure method, it turns into the multi-worker version that works on multiple

workers with in-graph replication. Note: configure will be called by higher-level APIs if

running in distributed environment.

In-graph replication: the client creates a single tf.Graph that specifies tasks for devices

on all workers. The client then creates a client session which talks to the master service of

a worker. Then the master will partition the graph and distribute the work to all

participating workers.

Worker: A worker is a TensorFlow task that usually maps to one physical machine. We

will have multiple workers with different task index. They all do similar things except for

one worker checkpointing model variables, writing summaries, etc. in addition to its

ordinary work.

The multi-worker version of this class maps one replica to one device on a worker. It

mirrors all model variables on all replicas. For example, in our program we have two

workers and each worker having single GPUs, it creates 2 copies of the model variables

on these 2 GPUs. Then like in MirroredStrategy, each replica performs their computation

with their own copy of variables unless in cross-replica model where variable or tensor

reduction happens.

85

5.5 Notes on using PyTorch Setup

In PyTorch program we have used the API, import torch.distributed as dist.

PyTorch distributed currently only supports Linux. By default, the Gloo and NCCL

backends are built and included in PyTorch distributed (NCCL only when building with

CUDA). As Rule of thumb, we use the NCCL backend for distributed GPU training using

CUDA.

Figure. 39 PyTorch Distributed API

In Figure. 39, The torch.distributed package provides PyTorch support and

communication primitives for multiprocess parallelism across several computation nodes

running on one or more machines. The class

torch.nn.parallel.DistributedDataParallel() builds on this functionality to provide

synchronous distributed training as a wrapper around any PyTorch model. This differs

from the kinds of parallelism provided by Multiprocessing package -

torch.multiprocessing and torch.nn.DataParallel() in that it supports multiple network-

connected machines and in that the user must explicitly launch a separate copy of the

main training script for each process.

Figure. 40 PyTorch Memory Shuffle

86

The task is distributed with 8 workers, and pin_memory is true so that the load of Dataset

which is on CPU, would push it during training to the GPU, so that it can speed up the

host to device transfer by enabling pin_memory.

This lets the DataLoader allocate the samples in page-locked memory, which speeds-up

the transfer.

As our hardware is single-machine synchronous case, torch.distributed or the

torch.nn.parallel.DistributedDataParallel() wrapper have below advantages over other

approaches to data-parallelism.

1. Each process maintains its own optimizer and performs a complete optimization step

with each iteration. While this may appear redundant, since the gradients have already

been gathered together and averaged across processes and are thus the same for every

process, this means that no parameter broadcast step is needed, reducing time spent

transferring tensors between nodes which decreases the execution time of the deep

learning model iteration.

2. Each process contains an independent Python interpreter, eliminating the extra

interpreter overhead and “GIL-thrashing” that comes from driving several execution

threads, model replicas, or GPUs from a single Python process. This is especially

important for models that make heavy use of the Python runtime, including models with

recurrent layers or many small components. As our program has recurrent LSTM layers

with many hidden layers it gives an advantage point during deep model iterations.

87

CHAPTER VI

IMPLEMENTATION

6.1 Best Learning Rate

Deep

Layers

Learning

Rate

Hidden

Layers

Execution

Time

Prediction

Accuracy F1 Score

3 0.01 32 0:53:25 0.18052256 0.0552101

3 0.01 64 1:20:59 0.18052256 0.0552101

3 0.01 128 1:48:32 0.18052256 0.0552101

3 0.001 32 0:53:41 0.91177469 0.9116894

3 0.001 64 1:20:42 0.8995589 0.8998715

3 0.001 128 2:44:04 0.91923988 0.9191246

3 0.0001 32 0:53:39 0.89582628 0.8954641

3 0.0001 64 1:20:57 0.87580591 0.8761988

3 0.0001 128 3:58:56 0.89752293 0.8974544

 Table. 6 Best Learning Rate

88

Figure. 41 Best Learning Rate

In the Figure 41. We have shown the prediction accuracy along with F1 score based on 3

different learning rates which are 0.01, 0.001 and 0.001. The F1 score is calculated based

on confusion matrix which is an important parameter to verify the calculated accuracy.

The learning rate 0.01 has shown the accuracy of 0.18 from Table. 2, which is bad so it

can’t be accepted as learning rate for the research. The learning rate 0.0001 has shown

the accuracy in between 85% - 90 % which is okay but when the execution time is

observed it’s very high, this time is almost double as compared to 0.01 learning rate so it

is discarded. The learning rate 0.001 has given the accuracy 0.9192 from Table. 6, which

is considered the best accuracy from 3 learning rates along with best execution time for

deep learning iterations.

0
0.2
0.4
0.6
0.8

1

0:53:25 1:20:59 1:48:32 0:53:41 1:20:42 2:44:04 0:53:39 1:20:57 3:58:56

32 64 128 32 64 128 32 64 128

0.01 0.01 0.01 0.001 0.001 0.001 0.0001 0.0001 0.0001

3 3 3 3 3 3 3 3 3

Learning	Rate

Prediction Accuracy F1 Score

89

6.2 CPU Execution Time between Layers

Figure. 42 Big Machine CPU Details

Deep Layers Residual

Layers

Hidden Layers

 32 64 128 256

 Execution

Time

Execution

Time

Execution

Time

Execution

Time

2 x 2 Layers 1:42:21 2:09:22 3:04:51 5:49:40

3 x 3 Layers 5:18:24 9:34:22 6:44:26 16:00:54

4 x 4 Layers 8:35:14 9:14:42 11:18:50 20:50:11

Table. 7 Execution rate between Layers in CPU

90

In Table. 7 , the execution time of all the 3 layers which are 2 deep layers along with 2

residual layers, 3 deep layers along with 3 residual layers and 4 deep layers along with 4

residual layers are shown which are done by the computational power of CPU. The CPU

hardware along with internal configuration is shown in Figure 42. The CPU uses its 16

core to do the computational analysis as shown in Figure. 50. Each layers having 4 types

of hidden layers which are 32 layers, 64 layers, 128 layers and 256 layers which are

having tensors to do the deep learning iterations. As shown in Figure. 43, the execution

time increases as the hidden layers increases in the same layer as shown in the bubble

chart. The smaller bubble means less execution time as compared to larger bubble which

reflects longer execution time. As the layers scale increases the execution time increases

as well. As we can see it from Figure. 44, as number of layers increases along with more

hidden layers the execution time is the more longer than previous one.

Figure. 43 Bubble Chart of CPU Execution

-50

0

50

100

150

200

250

300

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Execution Time Of CPU

91

Figure. 44 Column Graph of CPU Execution between Layers

6.3 GPU Execution Time between Layers

Deep Layers Residual

Layers

Hidden Layers

 32 64 128 256

 Execution

Time

Execution

Time

Execution

Time

Execution

Time

2 x 2 Layers 2:37:24 2:37:39 2:26:23 2:40:05

3 x 3 Layers 6:06:51 6:16:36 6:04:10 6:09:33

4 x 4 Layers 12:11:21 11:48:27 12:19:01 12:30:06

Table. 8 Execution rate between Layers in GPU

In the Table. 8, the execution time of 2 x 2 layers, 3 x 3 layers and 4 x 4 layers along with

32 hidden layers, 64 hidden layers, 128 hidden layers and 256 hidden layers are shown

which are done by the GPU cluster.

0:00:00
2:24:00
4:48:00
7:12:00
9:36:00

12:00:00
14:24:00
16:48:00
19:12:00
21:36:00

0:00:00

Execution Time Execution Time Execution Time Execution Time

32 64 128 256

CPU	Execution	Time

2 x 2 Layers 3 x 3 Layers 4 x 4 Layers

92

The graphical representation of the execution time of each layer along with hidden layers

are shown as bubble chart in Figure. 45 and as column bar graph in Figure. 46. Here we

found an interesting thing. The deep layers of network takes a certain amount of GPU

execution time which is irrelevant of the number of deep layers. As shown in Figure. 46,

the execution time of 4 x 4 layers of network is approximately same for all the 4 hidden

layers which can be referenced from the Figure. 45 as well.

Figure. 45 Bubble Chart of GPU Execution

-50

0

50

100

150

200

250

300

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Execution Time GPU

93

Figure. 46 Column Graph of GPU Execution between Layers

0:00:00

2:24:00

4:48:00

7:12:00

9:36:00

12:00:00

14:24:00

Execution Time Execution Time Execution Time Execution Time

32 64 128 256

GPU	Execution	Time

2 x 2 Layers 3 x 3 Layers 4 x 4 Layers

94

Figure. 47 2 x 2 Layers GPU Utilization Snapshot

From Figure. 47, 48, 49 we found that the computational power of GPU is harnessed only

by less than 1/3rd of the single GPU from the cluster. With the 2 x 2 layers, GPU

utilization is 18%, where with 3 x 3 layers it increased a little to 22%, then with 4 x 4

layers it increased to 31%. The GPU architecture is working on the principle of SIMD

vectorization.

SIMD processing exploits data-level parallelism. Data-level parallelism means that the

operations required to transform a set of vector elements can be performed on all

elements of the vector at the same time. That is, a single instruction can be applied to

multiple data elements in parallel.

95

Support for SIMD operations is pervasive in the Cell Broadband Engine. In the PPE, they

are supported by the Vector/SIMD Multimedia Extension instruction set. In the SPEs,

they are supported by the SPU instruction set.

In both the PPE and SPEs, vector registers hold multiple data elements as a single vector.

The data paths and registers supporting SIMD operations are 128 bits wide,

corresponding to four full 32-bit words. This means that four 32-bit words can be loaded

into a single register, and, for example, added to four other words in a different register in

a single operation.

The process of preparing a program for use on a vector processor is

called vectorization or SIMDization. It can be done manually by the programmer, or it

can be done by a compiler that does auto-vectorization. Here GPU does the auto-

vectorization process which is supported by 16 CPU core so that only 25 – 30 %

computational power of GPU 0 is utilized where most of the CPU cores are utilizing

100% of their power which can be referenced from Figure. 50.

96

Figure. 48 3 x 3 Layers GPU Utilization Snapshot

97

Figure. 49 4 x 4 Layers GPU Utilization Snapshot

98

Figure. 50 3 x 3 Layers CPU Utilization Snapshot

99

6.4 Bidirectional Vs Non-Bidirectional Execution between Layers

De

ep

La

yer

s

Resi

dual

Lay

ers

Bidire

ctional

Hidden Layers

 32 64 128 256

 Predic

tion

Accur

acy

Exec

ution

Time

Predic

tion

Accur

acy

Exec

ution

Time

Predic

tion

Accur

acy

Execu

tion

Time

Predic

tion

Accur

acy

Exec

ution

Time

3 3 TRUE 0.910

07805

5:18:

24

0.911

43537

9:34:

22

0.913

13201

6:44:2

6

0.182

21921

16:0

0:55

3 3 FALS

E

0.932

13439

2:47:

35

0.883

94976

3:52:

52

0.920

93652

6:03:3

8

0.182

21921

21:5

1:49

Table. 9 Bidirectional vs Non-bidirectional layers execution time

100

Figure. 51 Column Graph of Execution time between bidirectional and non-bidirectional

In the Table. 9, execution time along with prediction accuracy is shown in 3 x 3 deep

residual layers where one learning is by bidirectional while the other learning is by non-

bidirectional or unidirectional. When we observe the result of prediction accuracy in

Figure. 51, with 32 layers of hidden layer unidirectional layers gave better prediction

accuracy but as deep layers increased to 64 layers and 128 layers the bidirectional layers

gave better prediction accuracy but on the cost of higher execution time as it’s almost

twice the LSTM layers as compared to unidirectional LSTM. As the deep layers with

hidden layers increased to a certain point of threshold tensors both the iterations failed to

give the expected prediction accuracy. So from this result we found out for each

experiment there is a high efficiency level above which it doesn’t matter to the

architectural level.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

32 64 128 256

Bidirectional	Vs	NonBidirectional

3 3 TRUE 3 3 FALSE

101

6.5 Stack Bidirectional Vs Stack Non-Bidirectional Execution between

Layers

De

ep

La

yer

s

Resi

dual

Lay

ers

Bidire

ctional

Hidden Layers

 32 64 128 256

 Predic

tion

Accur

acy

Exec

ution

Time

Predic

tion

Accur

acy

Exec

ution

Time

Predic

tion

Accur

acy

Execu

tion

Time

Predict

ion

Accur

acy

Exec

ution

Time

3 0 TRUE 0.887

68238

1:30:

33

0.917

54329

2:12:

40

0.902

95213

3:18:1

3

0.8927

72317

9:28:

29

3 0 FALS

E

0.911

77469

0:53:

41

0.899

5589

1:20:

42

0.919

23988

2:44:0

5

0.1822

19207

7:59:

22

Table. 10 Stack Bidirectional vs Stack Non-bidirectional execution time

102

Figure. 52 Deep Bidirectional vs Deep Non-bidirectional Execution time

In the Table. 10, the experiment is carried out between stack layers or deep layers with

bidirectional and non-bidirectional communications. The Figure. 52 show that, the

prediction accuracy is better with unidirectional communication between layers with

lesser hidden layers, as the network goes more and more with more hidden layers the

bidirectional accuracy degrades. The bidirectional communication gives much better

result as compared to single directional communications in 256 hidden layers which is a

very good prediction accuracy.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

32 64 128 256

Deep	Bidir	vs	Deep	NonBidir

3 0 TRUE 3 0 FALSE

103

6.6 Best Accuracy between all Layers

De

ep

La

yer

s

Resi

dual

Lay

ers

Bidire

ctional

Hidden Layers

 32 64 128 256

 Predic

tion

Accur

acy

Exec

ution

Time

Predic

tion

Accur

acy

Exec

ution

Time

Predic

tion

Accur

acy

Execu

tion

Time

Predict

ion

Accur

acy

Exec

ution

Time

3 0 TRUE 0.887

68238

1:30:

33

0.917

54329

2:12:

40

0.902

95213

3:18:1

3

0.8927

72317

9:28:

29

3 0 FALS

E

0.911

77469

0:53:

41

0.899

5589

1:20:

42

0.919

23988

2:44:0

5

0.1822

19207

7:59:

22

3 3 FALS

E

0.932

13439

2:47:

35

0.883

94976

3:52:

52

0.920

93652

6:03:3

8

0.1822

19207

21:5

1:49

3 3 TRUE 0.910

07805

5:18:

24

0.911

43537

9:34:

22

0.913

13201

6:44:2

6

0.1822

19207

16:0

0:55

Table. 11 Best Accuracy in 3 deep layers

104

Figure. 53 Best Accuracy among all types of 3 stacked layers

In Figure. 53, the prediction accuracy along with execution time of each 3 deep layers

with residual layer or without residual layer, with bidirectional or without bidirectional

layers is calculated to give an overview of better layer for this experiment. If we observe

the 32 hidden layers, 3 x 3 bidirectional false gives the best prediction accuracy with

good execution time, with 64 hidden layers 3 x 3 bidirectional gives better prediction

accuracy than any of them as proved in previous section, with 128 hidden layers, 3 x 3

non-bidirectional gives best accuracy but with higher execution time where 3 x 0 gives

almost similar prediction accuracy with half of the execution time, with 256 hidden 3 x 0

bidirectional layer is the clear winner as compare to others in terms of prediction

accuracy and execution time.

0

0.2

0.4

0.6

0.8

1

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

32 64 128 256

Best	Accuracy

3 0 TRUE 3 0 FALSE 3 3 FALSE 3 3 TRUE

105

6.7 Between Deep Residual Bidirectional between 3 x3 and 4 x4

De

ep

La

yer

s

Resi

dual

Lay

ers

Bidire

ctional

Hidden Layers

 32 64 128 256

 Predic

tion

Accur

acy

Exec

ution

Time

Predic

tion

Accur

acy

Exec

ution

Time

Predic

tion

Accur

acy

Exec

ution

Time

Predict

ion

Accura

cy

Exec

ution

Time

3 3 TRUE 0.910

07805

5:18:

24

0.911

43537

9:34:

22

0.913

13201

6:44:

26

0.1822

19207

16:0

0:55

4 4 TRUE 0.914

48933

8:35:

14

0.875

80591

9:14:

42

0.904

30945

11:1

8:50

0.1822

19207

20:5

0:11

Table. 12 Deep Residual 3 x3 vs 4 x 4 layers

Figure. 54 Column graph of 3 x 3 vs 4 x 4 Deep Residual Layers

0

0.2

0.4

0.6

0.8

1

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

32 64 128 256

Deep	Residual	Bidirectional	Layer	

3 3 TRUE 4 4 TRUE

106

In Figure. 54, we are trying to show how deep residual bidirectional layers going to

behave in a more complex network for this it is used all over the researches. We found

that with our test data and higher layers of bidirectional communication the execution

increases rapidly but the prediction accuracy dropped with giving the same test result as 3

x 3 layers. We might need more datasets with more complex architecture to test this

feature.

6.8 Between Deep Layer vs Prediction Accuracy vs Exe Time in CPU

Deep

Layer

s

Hidden Layers

 32 64 128 256

 Predicti

on

Accura

cy

Execut

ion

Time

Predicti

on

Accura

cy

Execut

ion

Time

Predicti

on

Accura

cy

Execut

ion

Time

Predicti

on

Accura

cy

Execut

ion

Time

2

Layer

s

0.92229

3842

1:42:2

1

0.92466

9147

2:09:2

2

0.87750

2561

3:04:5

1

0.18221

9207

5:49:4

0

3

Layer

s

0.91007

8049

5:18:2

4

0.91143

5366

9:34:2

2

0.91313

2012

6:44:2

6

0.18221

9207

16:00:

54

4

Layer

s

0.91448

9329

8:35:1

4

0.87580

5914

9:14:4

2

0.90430

9452

11:18:

50

0.18221

9207

20:50:

11

Table. 13 Execution matrix of all layers by CPU

107

Figure. 55 CPU Execution Graph for all Layers

In the Figure. 55, we have shown the prediction accuracy along with execution time of

different layers which are 2 x 2 layers, 3 x 3 layers and 4 x 4 layers. With 32 hidden

layers, the 2 x 2 architecture performed better with higher prediction accuracy than other

layers, with 64 layers we observed 2 x 2 layers performance improved with good

prediction accuracy of 0.9246, with 128 hidden layers the 3 x 3 architecture started

performing better than others with 0.9131 prediction accuracy, with 256 hidden layers 4 x

4 architecture started giving better prediction accuracy than other layers which is 0.2143

but it’s still a low prediction accuracy. The execution of 4 x 4 layer is always higher as it

needs more hidden layers to iterate over deep learning model. This experiment concluded

that our research data performs expectedly well with 3 x 3 architecture. We might need a

bigger dataset to check the feasibility over 4 x 4 layer.

0

0.2

0.4

0.6

0.8

1

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

32 64 128 256

Deep	Layers	Vs	Prediction	Accuracy	Vs	
Execution	Time(CPU)

2 Layers 3 Layers 4 Layers

108

6.9 Between Deep Layer vs Prediction Accuracy vs Exe Time in GPU

Deep

Layer

s

Hidden Layers Hidden Layers Hidden Layers Hidden Layers

 32 64 128 256

 Predicti

on

Accurac

y

Executi

on

Time

Predicti

on

Accurac

y

Executi

on

Time

Predicti

on

Accurac

y

Executi

on

Time

Predict

ion

Accura

cy

Execu

tion

Time

2

Layer

s

0.90125

5488

2:37:24 0.93281

3048

2:37:39 0.90464

8781

2:26:23 0.1822

19207

2:40:0

5

3

Layer

s

0.89345

0975

6:06:51 0.92534

7805

6:16:36 0.88327

1098

6:04:10 0.1822

19207

6:09:3

4

4

Layer

s

0.90770

2744

12:11:2

2

0.92025

7866

11:48:2

7

0.18221

9207

12:19:0

1

0.1822

19207

12:30:

06

Table. 14 Execution matrix of all layers by GPU

109

Figure. 56 GPU Execution Graph for all Layers

The Figure. 56, has shown the prediction accuracy and execution time between different

layers such as 2 x 2, 3 x 3, and 4 x 4 with 32, 64, 128 and 256 hidden layers with the

computational power of the GPU cluster. With GPU the 4 x 4 layer started performing

with higher prediction accuracy of 0.9077 than other layers in 32 layers hidden network,

with 64 hidden layers the 2 x2 layer gives better prediction accuracy of 0.9338 than other

layers, with 128 hidden layers the 2 x 2 results much better with good prediction accuracy

of 0.9046 and outstanding execution time which is overall same as explained in previous

section, with 256 layers of hidden network all layers failed to give an expected prediction

accuracy but the execution improved drastically over CPU. The execution time just

dropped to half with GPU cluster as compared to CPU.

0

0.2

0.4

0.6

0.8

1

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

32 64 128 256

Deep	Layers	Vs	Prediction	Accuracy	Vs	
Execution	Time(GPU)

2 Layers 3 Layers 4 Layers

110

6.10 Deep Layer CPU Execution

D

ee

p

La

ye

rs

Re

sid

ual

La

yer

s

Har

dw

are

Hidden Layers

 8 16 32 64 128 256

 Pre

dict

ion

Acc

ura

cy

Ex

ecu

tio

n

Ti

me

Pre

dic

tio

n

Ac

cur

acy

Ex

ecu

tio

n

Ti

me

Pre

dict

ion

Acc

ura

cy

Ex

ecu

tio

n

Ti

me

Pre

dic

tio

n

Ac

cur

acy

Ex

ecu

tio

n

Ti

me

Pre

dict

ion

Acc

ura

cy

Ex

ecu

tio

n

Ti

me

Pre

dict

ion

Acc

ura

cy

Ex

ecu

tio

n

Ti

me

4

x

4 CP

U

0.9

182

218

91

7:5

8:2

1

0.9

04

98

81

1

7:5

8:4

6

0.9

144

893

29

8:3

5:1

4

0.8

75

80

59

1

9:1

4:4

2

0.9

043

094

52

11:

18:

50

0.1

822

192

07

20:

50:

11

Table. 15 4 x 4 deep Layers CPU execution matrix

111

Figure. 57 Column Graph of 4 x 4 deep Layers CPU execution

In Figure. 57, we have performed the experiment of 4 x 4 deep layers with very low

hidden layers to higher hidden layers to check the prediction accuracy. With 8 layers of

hidden layers, the accuracy is better as compared to other hidden layers network. As the

layers increase over time, the prediction accuracy started to drop. In this experiment, we

found that 16 layers and 128 layers the prediction accuracy is almost equivalent but the

execution time difference is increased to 25% more.

6.11 Lower GPU vs Higher CPU

Deep

Layer

s

Resid

ual

Layer

s

Hard

ware

Hidden Layers

 32 64 128 256

 Predi

ction

Exec

ution

Predi

ction

Exec

ution

Predi

ction

Exec

ution

Predi

ction

Exec

ution

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Pr

ed
ic

ti
on

 A
cc

ur
ac

y

Ex
ec

ut
io

n
T

im
e

Pr
ed

ic
ti

on
 A

cc
ur

ac
y

Ex
ec

ut
io

n
T

im
e

Pr
ed

ic
ti

on
 A

cc
ur

ac
y

Ex
ec

ut
io

n
T

im
e

Pr
ed

ic
ti

on
 A

cc
ur

ac
y

Ex
ec

ut
io

n
T

im
e

Pr
ed

ic
ti

on
 A

cc
ur

ac
y

Ex
ec

ut
io

n
T

im
e

Pr
ed

ic
ti

on
 A

cc
ur

ac
y

Ex
ec

ut
io

n
T

im
e

8 16 32 64 128 256

4 x 4 CPU

112

Accur

acy

Time Accur

acy

Time Accu

racy

Time Accur

acy

Time

3 x 3 GPU 0.893

4509

75

6:06:

51

0.925

3478

05

6:16:

36

0.88

3271

1

6:04:

10

0.182

2192

07

6:09:

33

4 x 4 CPU 0.914

4893

29

8:35:

14

0.875

8059

14

9:14:

42

0.90

4309

45

11:18

:50

0.182

2192

07

12:30

:06

Table. 16 3 x 3 Layer GPU vs 4 x4 Layer CPU execution matrix

In Table. 16, it has shown the data of execution with 3 x 3 deep layers of GPU and 4 x 4

layers with CPU to evaluate the beneficial power of GPU over CPU for more complex

network with bigger dataset. We found that the prediction accuracy of 4 x 4 CPU is more

with 32 layers, then with 64 layers the 3 x 3 GPU gives better prediction accuracy then

CPU of 4 x 4, with 128 hidden layers the CPU performs better with higher prediction

accuracy of 0.9043 as compared to GPU with 2 times execution time taken from GPU

which is not good. In Figure. 58, by adding 256 layers the execution speed of 4 x 4 is

increased to double but failed to give an expected prediction accuracy on both the CPU

and GPU models.

113

Figure. 58 Column Graph of 3 x 3 GPU vs 4 x 4 CPU Execution Result

6.12 4 x 4 CPU vs 4 x 4 GPU Layers

Deep

Layer

s

Resid

ual

Layer

s

Hard

ware

Hidden Layers

 32 64 128 256

 Predi

ction

Accur

acy

Exec

ution

Time

Predi

ction

Accur

acy

Exec

ution

Time

Predi

ction

Accu

racy

Exec

ution

Time

Predi

ction

Accur

acy

Exec

ution

Time

4 x 4 CPU 0.914

4893

29

8:35:

14

0.875

8059

14

9:14:

42

0.90

4309

45

11:18

:50

0.182

2192

07

20:50

:11

4x 4 GPU 0.907

7027

12:11

:22

0.920

2578

11:48

:27

0.18

2219

12:19

:01

0.182

2192

12:30

:06

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

32 64 128 256

Higher	CPU	vs	Lower	GPU

3 x 3 GPU 4 x 4 CPU

114

44 66 2 07

Table.17 4 x 4 Layers CPU vs GPU Execution

Figure. 59 Graph of 4 x 4 deep layers CPU vs GPU Execution

In Figure. 59, we have shown the computational power of both CPU and GPU of a

complex deep learning model with 4 x 4 architecture. With 32 nodes of hidden layers,

the CPU performs better with higher prediction accuracy of 0.9144, with 64 nodes of

hidden layers the GPU is giving better result with 0.9205 with same execution of

previous hidden layers, with 128 layers CPU performance is 0.9043 which is outstanding

as compared to GPU which is just 0.18. When we went to 256 hidden layers, the GPU

and CPU in 4 x 4 failed to get expected results as both gave the same prediction accuracy

of 0.18, but the execution time of CPU is almost 100% more as compared to GPU

execution time. So in this experiment, 64 hidden layers GPU is the selected result which

is 92%.

0

0.2

0.4

0.6

0.8

1

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

32 64 128 256

4	x	4	CPU	vs	GPU

4 x 4 CPU 4x 4 GPU

115

6.13 Bidirectional Lower vs Stack Higher Layers

D

ee

p

L

ay

er

s

Resid

ual

Layer

Bidire

ctiona

l

Hidden

Layers

Hidden Layers Hidden

Layers

Hidden Layers

 32 64 128 256

 Predi

ction

Accu

racy

Exec

ution

Time

Predic

tion

Accur

acy

Execu

tion

Time

Predi

ction

Accu

racy

Exec

ution

Time

Predict

ion

Accura

cy

Exec

ution

Time

2

x

2 TRU

E

0.922

2938

4

1:42:

21

0.924

66914

7

2:09:

22

0.87

7502

56

3:04:

51

0.1822

19207

5:49:

40

3

x

3 FALS

E

0.932

1343

9

2:47:

35

0.883

94975

7

3:52:

52

0.92

0936

52

6:03:

38

0.1822

19207

21:51

:49

Table. 18 2 x 2 Bidirectional Stack Layer vs 3 x 3 Stack Layer

In the Figure. 60, we have shown the 2 x 2 bidirectional layers with 3 x 3 non-

bidirectional layers which having almost same computational powers as 2 x 2 with

bidirectional gives 8 times of complex network over single LSTM cells where 3 x 3 non-

bidirectional gives 9 times of complex network over single LSTM cell. With 32 hidden

layers, 3 x3 layers gives better accuracy over 2 x 2 layers where 64 layers, 2 x 2 layers

gives better result. When we consider the 128 hidden layers over 2 x 2 and 3 x 3 stacked

116

layers we found out that initial lower layers are used to learn the model and higher layers

are used to calculate the accuracy of the model in this case 3 x 3 having more initial

layers which gives a better learning to the model than 2 x 2 layers. In 256 layers, both the

models failed to perform but when you see the execution time 3 x 3 layers execution time

is very high as compared to 2 x 2 model which is almost 4 times of 2 x 2 models. So the

conclusion we draw that with higher layers the model will learn much faster but with

increase of complexity of hidden layers it will fail to pass the learning to the higher layers

which takes more time as it becomes very slow to pass the information.

Figure. 60 Graph of 2 x 2 Bidirectional Stack Layer vs 3 x 3 Stack Layer

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

32 64 128 256

Bidirectional	vs	Stack

2 x 2 TRUE 3 x 3 FALSE

117

6.14 Stack vs Hidden layer on Execution Time and Prediction Accuracy

Layers Hidden Layers Execution Time Prediction Accuracy

2 x 2 32 1:42:21 0.922293842

2 x 2 64 2:09:22 0.924669147

2 x 2 128 3:04:51 0.877502561

2 x 2 256 5:49:40 0.182219207

4 x 4 8 7:58:20 0.918221891

4 x 4 16 7:58:46 0.90498811

4 x 4 32 8:35:14 0.914489329

4 x 4 64 9:14:42 0.875805914

Table. 19 2 x 2 stacked hidden layers vs 4 x 4 stacked hidden layers

Figure. 61 Execution time Graph of 2 x2 vs 4x 4 stacked layers

32 64 128 256

8

16
32

64

1:42:21
2:09:22 3:04:51 5:49:40

7:58:20

7:58:46

8:35:14
9:14:420.9222938420.9246691470.8775025610.182219207

0.918221891

0.90498811
0.9144893290.875805914

75%

80%

85%

90%

95%

100%

2 x 2 2 x 2 2 x 2 2 x 2 4 x 4 4 x 4 4 x 4 4 x 4

Stack	Layers	vs	Hidden	Layers

Hidden Layers Execution Time Prediction Accuracy

118

In the Table 19, we have shown the matrix of 2 x 2 stack layers with higher hidden layers

and compared with 4 x 4 stack layers with lower hidden layers which is having almost

same computational power over single layer. We have used 2 x 2 layers with 32, 64, 128

and 256 hidden layers and 4 x 4 layers with 8, 16, 32 and 64 hidden layers. As shown in

Figure 61, the biggest thing with higher layers is the execution time. The execution time

is very high with high layers with lower hidden layers. With 4 x 4 layers the execution

time is almost doubled as compared to the 2 x 2 layers. With time efficient, 2 x 2 layers

are the clear winners in this part of research as shown in Figure. 62. For prediction

accuracy, the 2 x 2 stacked layers with 32, 64 hidden layers gave better prediction

accuracy as compared to 4 x 4 stacked layers with 8, 16 layers of hidden layers. So we

concluded that lower models with higher hidden nodes provides better test results and

execution time as compared to higher layers with less hidden nodes.

119

Figure. 62 Execution time graph with stack layers vs hidden layers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

50

100

150

200

250

300

2 x 2 2 x 2 2 x 2 2 x 2 4 x 4 4 x 4 4 x 4 4 x 4

Stacked	Layers	vs	Hidden	Layers	

Hidden Layers Prediction Accuracy Execution Time

120

6.15 PyTorch vs TensorFlow Efficiency Comparison

Deep

Layers

Langu

age

Hidden Layers

 32 64 128 256

 Predicti

on

Accura

cy

Execut

ion

Time

Predicti

on

Accura

cy

Exec

ution

Time

Predicti

on

Accura

cy

Exec

ution

Time

Predicti

on

Accura

cy

Exec

ution

Time

3

Layers

PyTor

ch

0.9114

87694

0:40:5

3

0.9022

57844

0:51:

39

0.9182

66254

2:21:

13

0.1822

18305

6:58:

31

3

Layers

Tensor

Flow

0.9117

74695

0:53:4

1

0.8995

58902

1:20:

42

0.9192

39879

2:44:

05

0.1822

19207

7:59:

22

Table.20 Efficiency between PyTorch and TensorFlow

121

Figure. 63 Execution Graph between PyTorch and TensorFlow

In Table. 20, it shows the experiment result of 3 deep layered network with 32, 64, 128

and 256 hidden layers programmed using TensorFlow API and PyTorch API.

TensorFlow and PyTorch both are very good frameworks used by machine learning

researchers for building deep neural networks. The major difference is TensorFlow core

APIs are built using C++ and Python is used as wrapper on core to communicate with

data where PyTorch is built on top of Torch framework with python wrapper. The best

way to compare two frameworks is to code something up in both of them.

In Figure. 63, it displays our graphical representation of the Table. 20 data. We found out

PyTorch is executing much faster than TensorFlow. The execution time is always lower

than TensorFlow in all the hidden layers. The prediction accuracy is similar with

TensorFlow. During the whole experiment, in the 128 hidden layer network PyTorch

results marginally better prediction accuracy and less execution time than TensorFlow

framework so PyTorch is the winner.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

32 64 128 256

PyTorch	Vs	TensorFlow

3 Layers PyTorch 3 Layers TensorFlow

122

6.16 Raspberry PI Cluster vs Intel Xeon CPU Efficiency Comparison

Dee

p

Lay

ers

Hard

ware

Hidden Layers

 32 64 128 256

 Predicti

on

Accura

cy

Exec

ution

Time

Predicti

on

Accura

cy

Exec

ution

Time

Predicti

on

Accura

cy

Exec

ution

Time

Predicti

on

Accura

cy

Exec

ution

Time

3

Lay

ers

PI

Clust

er

0.9217

09823

1:43:

51

0.9049

81205

2:45:

39

0.9221

89017

4:14:

43

0.1822

18305

10:19

:31

3

Lay

ers

Intel

Xeon

CPU

0.9117

74695

0:53:

41

0.8995

58902

1:20:

42

0.9192

39879

2:44:

05

0.1822

19207

7:59:

22

Table.21 Efficiency between Raspberry Pi Cluster and Intel Xeon CPU

In this section, we did another experiment where we executed our LSTM deep learning

model with same UCI dataset but with different hardware. In the previous section, we

used the same dataset using same hardware but with different frameworks. One hardware

would be a 16 threads multicore Intel Xeon CPU processor with 32 GB of memory and

another hardware is 16 Raspberry Pi nodes cluster each having 1 GB RAM working in a

cluster fashion made by parameter server architecture.

123

 In the Table.21, we noted all our experiment results. Figure 64 is the graphical

representation of our experimental result. We observed that in distributed machine

learning, the accuracy of model is improved with more execution time. With 32 hidden

layers, PI cluster give 92% accuracy in 1hour 43 minutes execution time where Intel CPU

give 91% accuracy with 53 minutes execution time. The cluster is giving better prediction

accuracy with high execution time than multicore Intel CPU. This is might be due to

execution throughput with 16 PIs connecting together during the execution. With 256

layers, the accuracy is equivalent on both the hardware which just 18% but the execution

time of cluster is higher than single Intel Xeon CPU. So we can draw the conclusion that

with high power GPU clustered distributed machines this could be an efficient

performance improvement which needs further research.

Figure.64 Execution graph between Pi Cluster vs Intel Xeon CPU

0

0.2

0.4

0.6

0.8

1

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

32 64 128 256

Raspberry	PI	Cluster	Vs	CPU

3 Layers PI Cluster 3 Layers Intel Xeon CPU

124

CHAPTER VII

CONCLUSION

7.1 Summary

In this thesis, we proposed a distributed deep learning model to solve a Human Activity

Recognition (HAR) problem. We focused on the deep learning model using

asynchronous parameter server architecture as well synchronous all-reduce approach. For

this purpose, we have created the Raspberry Pi cluster using 16 Raspberry Pi nodes and

the NVIDIA GPU cluster having 3 NVIDIA GPUs where both the systems are tested

with distributed approach by using distributed TensorFlow API and PyTorch API. To

work on the HAR problem, we have created a Residual Bidirectional LSTM to simulate

HAR by using this distributed system. There are several points that we tested in this

research thesis. First we created a multilayer deep learning model with 2 x 2, 3 x 3 and 4

x 4 architecture where stacked layers are compared with non-stacked layers, stacked

layers are compared with residual bidirectional layers, residual bidirectional layers are

compared with residual non-bidirectional layers. Those layers with different variations

were executed over CPUs and GPUs to benchmark the performance. The small stacked

layers with heavy hidden layers are compared with high stacked layers with less hidden

layers on both CPU and GPU.

125

In this experiment, when we evaluated the execution times along with prediction

accuracy over the multicore CPU and the GPU cluster using different programming APIs:

TensorFlow and PyTorch. Note that the execution time of PyTorch over 3 x3 layer is

faster than TensorFlow over the same layer. We have also tested the distributed

TensorFlow framework in Raspberry Pi cluster to benchmark the CPU performance of

16- node Raspberry Pi cluster, where each Pi having 1 GB RAM, all-together 16 GB

RAM equivalent with 32 GB Octacore Intel Xeon CPU. When the result of CPU

computation of 2 x 2 layers over the multicore CPU is compared with the Raspberry Pi

cluster, we found that in distributed network the execution time is almost twice than the

multicore system due to high latency and low throughput.

After comparing all experiments, the result show that the implementation of distributed

TensorFlow on the GPU cluster works much faster than on the multicore CPU for high

number of stacked layers with multi hidden layers. But it takes approximately same time

for less stacked layers and dense stacked layers. For lesser stacked layers, GPU

computation is less efficient. The CPU computation gives better prediction accuracy with

3 x 3 stacked layers but execution time is 3 times slower than the GPU cluster

7.2 Future Work

There will be continuous efforts on developing PyTorch and TensorFlow programming

frameworks with different computing structures. How PyTorch will behave with the GPU

clusters would be another interesting study. There are multiple distributed architectures

that need to be tested. This would not only require changes in the programming structure,

but would also need more sophisticated multi GPU cluster hardware machines. For

achieving efficiency in terms of optimal data movement this attempt would require

multiple GPU units physically connected to each other like Raspberry Pi cluster or

connected over the internet where bandwidth would be another parameter to do research.

Due to limitation of GPUs with more machines, multi machine GPU cluster could be a

126

future work. With a Network Attached Storage (NAS) server along with Raspberry Pi

cluster would become a more effective solution for storage problems. The distributed

deep learning is just the beginning of a new dimension of research with massive scales

datasets from different geographical areas.

127

APPENDIX A – TESTBED ARCHITECTURE

A.1 NVIDIA GPU MACHINE SETUP

In this single machine cluster, there are 3 NVIDIA GPU cards used. There GPUs are

taken from different old machines and put together in this machine for clustering purpose.

1. NVIDIA Tesla K40c

2. NVIDIA Quadro p5000

3. NVIDIA K640

Different GPUs might be installed with different drivers in different machine. Those

should be under one driver in a single machine cluster which should support all the

GPUs.

The command to check if any driver already installed in your machine.

$ ubuntu-drivers devices

The command to show all NVIDIA drivers in your machine.

$ lspci -v | grep NVIDIA

Step-1 : Remove previous installations

The command removes if any older driver already installed.

$ sudo apt-get purge nvidia*

The command removes CUDA installation along with drivers as well.

$ sudo apt-get autoremove

The command checks what NVIDIA GPU cards the machine having as shown in Figure.

 $ sudo lshw -c display

128

Figure.65 NVIDIA GPU Cards

You can see in the Figure.65, those are default “driver= nouveau” that means NVIDIA

driver is not installed in this machine.

There are 2 ways to install NVIDIA driver in machine.

First one is to install from PPA drivers which is third party compatible with all NVIDIA

GPUs. The Second one is installing from NVIDIA website by manually checking each

GPU model with driver compatibility.

The advantage of ppa is easy and it automatically keeps updating if the creator adds new

versions. Ubuntu integrates video into kernel with dpkg. If you install directly from

NVIDIA, you still have to manually rerun that part of install task with each kernel update

otherwise video stops working. With PPA it’s automatic. That’s why you don’t see it in

synaptic nor dpkg commands.

129

Step-2: Download the Driver (With NVIDIA Driver)

https://www.nvidia.com/content/DriverDownload-

March2009/confirmation.php?url=/tesla/410.104/NVIDIA-Linux-x86_64-

410.104.run&lang=us&type=Tesla

In the website, you need to choose the required driver for the installed GPUs in your

machine by the below page as shown in Figure.66.

Figure.66 NVIDIA Driver Repository

As I have 3 different GPUs, Tesla K40c is compatible with NVIDIA-Linux-x86_64-

410.104. Quadro p5000 & Quadro K620 are compatible with NVIDIA-Linux-x86_64-

418.56. For all 3 GPUs, I am taking the 410.104 as base driver version.

Step-3: Build Essential Dependencies

1. build-essentials – For building drivers

130

2. dkms – For providing dkms support, DKMS is for packages that provide a kernel

module in source form (or binary with a source wrapper), so they don’t have to update

the module for every kernel rebuild.

3. gcc-multilib – For providing 32-bit support

4. xorg and xorg-dev – For graphic display on a workstation with GUI (If not installed)

 Check with command: $ sudo X -version

Figure.67 Graphics Display

Please run the command: $ sudo apt-get install build-essential gcc-multilib dkms

Step-4: Disable default nouveau

Please note that nouveau drivers manual removal is required only if you are going to

install the proprietary NVIDIA drivers. If not after NVIDIA driver installation, nouveau

may cause blurry screens. As we have NVIDIA GPUs, we need to remove it before

installing NVIDIA drivers.

1. Please create a file. Please follow the command below.

 $ sudo gedit /etc/modprobe.d/blacklist-nouveau.conf

2. Please add below contents in it

131

blacklist nouveau

blacklist lbm-nouveau

options nouveau modeset=0

alias nouveau off

alias lbm-nouveau off

Please verify the file with contents by below command

cat /etc/modprobe.d/blacklist-nouveau.conf

Step-5: Update the initramfs

It needs to update the initramfs which might be configured to load the nouveau drivers.

The update-initramfs script manages your initramfs images on your local box. It keeps

track of the existing initramfs archives in /boot. There are three modes of operation

create, update or delete. You must at least specify one of those modes.

Please run the command below.

 $ sudo update-initramfs -u

It will give confirmation with below line.

update-initramfs: Generating /boot/initrd.img-4.18.0-15-generic

Please reboot the machine to proceed further.

Step-6: Stop Desktop Manager

132

After computer is rebooted, we need to stop the desktop manager before executing the

runfile to install the driver. lightdm is the default manager in Ubuntu. If GNOME or KDE

desktop environment is used, then desktop manager would be gdm or kdm.

To find the running session in your machine please use below command.

$ echo 'Desktop: %s\nSession: %s\n'"$XDG_CURRENT_DESKTOP"

"$GDMSESSION"

Figure.68 GDM Session

Please run the command to stop gdm service.

$ sudo service gdm stop

In order to install new NVIDIA driver we need to stop the current display server. The

easiest way to do this is to change into runlevel 3 using telinit command. After this

command, the display server will stop, therefore make sure to save all current work

before proceed.

Please run the command below.

$ sudo telinit 3

Step-6: Install the driver

cd $HOME

sudo chmod +x NVIDIA-Linux-x86_64-410.104.run

sudo ./NVIDIA-Linux-x86_64-410.104.run --dkms -s

Step-7: Check Installation by using below command.

133

$ nvidia-smi

As shown in Figure.68, after successful installation, it will report all CUDA capable

devices in your system.

Figure.69 NVIDIA Driver Successful Installation Snapshot

Step -2: (Alternative of above with PPA)

1. Add the Official NVIDIA PPA to Ubuntu and update it.

$ sudo add-apt-repository ppa:graphics-drivers/ppa

$ sudo apt update

134

2. Please check with below command which driver is required to install.

$ ubuntu-drivers devices

Figure.70 Ubuntu Driver Display

In Figure. 70, it clearly recommends nvidia-driver-418, but for hassle free environment,

we have installed 410.

3. Install the recommended NVIDIA Driver.

$ sudo apt install nvidia-driver-410

Step-3: Install CUDA Toolkit

Pre-Installation Actions

1. Please verify whether you have a CUDA capable GPU.

$ lspci | grep -i nvidia

2. Please verify whether you have a supported version of Linux.

$ uname -m && cat /etc/*release

135

3. Please verify the system has gcc installed.

$ gcc –version

4. Please verify if the system has correct kernel header installed

$ uname -r

5. Please run the command to install updated kernel header.

$ sudo apt-get install linux-headers-$(uname -r)

6. Please select below link to download the CUDA as in Figure.71.

https://developer.nvidia.com/cuda-downloads

Figure. 71 CUDA Toolkit

7. Install repository meta-data

$ sudo dpkg -i cuda-repo-<distro>_<version>_<architecture>.deb

8. Installing the CUDA public GPG key (Installing the local repo)

$ sudo apt-key add /var/cuda-repo-<version>/7fa2af80.pub

9. Update the Apt repository cache

136

$ sudo apt-get update

10. Install CUDA

$ sudo apt-get install cuda

11. Set Environment path (Post Installation)

1. Take backup of existing bashrc file.

2. Go to the home directory.

cd $HOME

3. Open the .bashrc file

sudo gedit .bashrc

4. Add following two commands in .bashrc file.

export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}}

export LD_LIBRARY_PATH=/usr/local/cuda-

10.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

5. Save and close the .bashrc file .

6. Restart the machine.

Verification Action already mentioned in the Implementation section.

Step-4: Install cuDNN

1. Go to the cuDNN download page (need registration) and select the latest cuDNN 7.5

version made for CUDA 10.0.

Please use the link below.

https://developer.nvidia.com/rdp/cudnn-download

137

2. Download all 3 .deb files: the runtime library, the developer library, and the code

samples library for Ubuntu 18.04.

3. Install them in the same order:

sudo dpkg -i libcudnn7_7.5.0.56-1+cuda10.0_amd64.deb (the runtime library)

sudo dpkg -i libcudnn7-dev_7.5.0.56-1+cuda10.0_amd64.deb (the developer library)

sudo dpkg -i libcudnn7-doc_7.5.0.56-1+cuda10.0_amd64.deb (the code samples)

4. The verification process is mentioned in the Implementation section.

Step-5: Install lipcupti-dev

1. Please use the below command.

sudo apt-get install libcupti-dev

2. Please add the below line in the bashrc file for environment setup. Use below

command. (Please take a backup of bashrc file)

echo 'export

LD_LIBRARY_PATH=/usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH'

>> ~/.bashrc

Please follow the given link for more details.

https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html

138

A.2 PROGRAM MACHINE SETUP

The HAR program contains multiple files. The 3 important files are

1. lstm_architecture.py

2. Config_Dataset_HAR.py

3. Config_Dataset_HAR.ipynb (Jupyter Notebook)

4. download_datasets.py

The “data” directory needs to be created manually with 775 access inside the

environment which is mentioned in the Config_Dataset_HAR as path for training and

testing data samples of HAR. The folder structure mentioned in the Figure. 8 will

automatically established by the Config file once it gets the data folder. The

download_dataset.py will load the UCI repository file for the first time from website and

put in the data directory. This file is places inside the data folder.

The first section of Config_Dataset_HAR.ipynb file will set the path of data, call the

download_datasets.py script to load the data and will create necessary directory structure

for the program. It needs to run only once for the whole program.

The second section of Config_Dataset_HAR.ipynb file on running creates

X_train_signals_paths and X_test_signal_paths with proper folder structure.

The load_X and load_y methods takes the input parameters of signal_paths and returns

ndarray which is tensor of features of both training and testing. Basically it prepares the

datasets for training and testing by the deep learning model.

The file lstm_architecture.py contains all the different types of LSTM functions which

139

are fed by the dataset from the Config_Dataset_HAR.py file with a window of 128

timesteps. The input of HAR should be a time series, and the basic structure of the

LSTM guarantees that it can preserve the characteristics on the temporal dimension.

The below input parameters used for different features.

self.training_epochs is the number of iterations the model will run.

self.learning_rate is the parameter which decides what would be the learning rate of the

model.

self.n_hidden is the parameter which decides how many hidden layers will be developed

by the model for experiment.

self.use_bidirectionnal_cells is the parameter which decided cells will do bidirectional

communication or not.

n_layers_in_highway parameter decides how many residual layers would be there in the

model.

n_stacked_layers parameter decides how many deep-stacked layers would be there in

the model.

OneHotEncoder

A one hot encoding is a representation of categorical variables as binary vectors. This

first requires that the categorical values be mapped to integer values. Then, each integer

value is represented as a binary vector that is all zero values except the index of the

integer, which is marked with a 1. We have not used any API for this, we have used the

manual process. The function one_hot(y) converts labels from dense to one hot layer.

For example it takes [[5], [0], [3]] as input array and returns [[0, 0, 0, 0, 0, 1], [1, 0, 0, 0,

0, 0], [0, 0, 0, 1, 0, 0]] as output.

140

L2 Regularization

We have used L2 regularization in the context of Stochastic Gradient Descent in Neural

Network.

Figure.72 An L2-regularized version of the cost function used in SGD of RNN

Generally in Machine Learning, when we fit our model we search the solution space for

the most fitting solution; In the context of Neural Networks, the solution space can be

thought of as the space of all functions our network can represent. We know that the size

of this space depends on the depth of the network and the activation functions used. We

also know that with at least one hidden layer followed by an activation layer using a

“squashing” function, this space is very large, and that it grows exponentially with the

depth of the network (e.g the universal approximation theorem).

When we are using Stochastic Gradient Descent (SGD) to fit our network’s parameters to

the learning problem at hand, we take, at each iteration of the algorithm, a step in the

solution space towards the gradient of the loss function J(θ; X, y) in respect to the

network’s parameters θ. Since the solution space of deep neural networks is very rich,

this method of learning might overfit to our training data. This overfitting may result in

significant generalization error and bad performance on test data, in the context of model

development, if no counter-measure is used. Those counter-measures are called

regularization techniques.

Additionally, a large network can be optimized correctly for a problem with sufficient

141

regularization, such as L2 weight decay and dropout. However, if no regularization is

used, results trend to overfitting and bad operations on the test set. Complexity is good

but only if countered with regularization. Too many layers and cells per layer will

increase the computational complexity and waste computational resources. When the

layer number and cell number reach a certain scale, the recognition accuracy will remain

at a certain scale instead of increasing. By adding more depth, regularization is then

needed to avoid overfitting while still improving accuracy. The L2 norm of the weights

for weight decay is added in the loss function in our deep learning model.

Our deep LSTM neural network is limited in terms of how many data points it can

access: it has access to only 128 time steps when making its predictions. Especially when

deepened, the next forward/backward duo will see output from the other pass “in

advance”, because, logically, a backward pass for our bidirectional LSTM reverses the

input and the output before the concatenation. Thus, the Bidir-LSTM has the same input

and output shape as the baseline LSTM. But at a given time step, it has access to more

information in advance because of the backward passes.

Activation Function

In our network, the activity function is unified with ReLU, because it always outperforms

with deep networks to counter gradient vanishing. Using it’s recommended to use RELU/

leaky RELU as the activation function, as it is relatively robust to the vanishing/

exploding gradient issue (especially for networks that are not too deep). Although the

output is a tensor for a given time window, the time axis has been crunched by the neural

network. That is, we need only the last element of the output and can discard the others.

Thus, only the gradient from the prediction at the last time step is applied. This also

causes a LSTM cell to be unnecessary: the uppermost backward LSTM in the

bidirectional pass. Hopefully, this is not of great concern because TensorFlow should

142

evaluate what to compute and what not to compute. Additionally, the training dataset

should be shuffled during the training process. The state of the neural network is reset at

each new window for each new prediction. In our experiment, 3 x 3 residual bidirectional

LSTM out-performing other LSTM models with 2 x2 and 4 x 4 architecture. The 3 x 3

could be thought of 18 LSTM cells working in a network.

Adam Optimizer

Adam is an adaptive learning rate optimization algorithm that’s been designed

specifically for training deep neural networks. First published in 2014, Adam was

presented at ICLR 2015 conference for deep learning practitioners. Adam is an adaptive

learning rate method, which means, it computes individual learning rates for different

parameters. Its name is derived from adaptive moment estimation, and the reason it’s

called that is because Adam uses estimations of first and second moments of gradient to

adapt the learning rate for each weight of the neural network.

Dropout

self.keep_prob_for_dropout is the parameter which specifies the dropout in the model.

dropout is applied between each layer on the depth axis or, sometimes, just at the output,

depending on what is specified in the configuration file, which is another hyper-

parameter. Dropout refers to the fact that parts of tensors that are output by the hidden

layer are shut down to a zero value to a certain probability for each value in each training

epoch, while other values scale up accordingly to keep the same geometric norm of the

tensor’s values. The inoperative nodes can be regarded as dead nodes (or neurons) that

are temporarily not in the network, which means that the weights and biases behind these

dead notes temporarily neither learns nor contributes to the predictions during that

training step for a batch. The weights are kept intact.

143

APPENDIX B – SOURCE CODE

B.1 TensorFlow Code

download_dataset.py

!wget "https://archive.ics.uci.edu/ml/machine-learning-databases/00240/UCI HAR

Dataset.zip"

!wget "https://archive.ics.uci.edu/ml/machine-learning-databases/00240/UCI HAR

Dataset.names"

import copy

import os

from subprocess import call

print("")

print("Downloading UCI HAR Dataset...")

if not os.path.exists("UCI HAR Dataset.zip"):

 call(

 'wget "https://archive.ics.uci.edu/ml/machine-learning-databases/00240/UCI HAR

Dataset.zip"',

 shell=True

)

 print("Downloading done.\n")

else:

144

 print("Dataset already downloaded. Did not download twice.\n")

print("Extracting...")

extract_directory = os.path.abspath("UCI HAR Dataset")

if not os.path.exists(extract_directory):

 call(

 'unzip -nq "UCI HAR Dataset.zip"',

 shell=True

)

 print("Extracting successfully done to {}.".format(extract_directory))

else:

 print("Dataset already extracted. Did not extract twice.\n")

lstm_architecture.py

__author__ = 'jk_ranbir'

import tensorflow as tf

from sklearn import metrics

from sklearn.utils import shuffle

import numpy as np

from datetime import datetime

import time

def one_hot(y):

 """convert label from dense to one hot

 argument:

145

 label: ndarray dense label ,shape: [sample_num,1]

 return:

 one_hot_label: ndarray one hot, shape: [sample_num,n_class]

 """

 # e.g.: [[5], [0], [3]] --> [[0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]]

 y = y.reshape(len(y))

 n_values = np.max(y) + 1

 return np.eye(n_values)[np.array(y, dtype=np.int32)] # Returns FLOATS

def batch_norm(input_tensor, config, i):

 # Implementing batch normalisation: this is used out of the residual layers

 # to normalise those output neurons by mean and standard deviation.

 if config.n_layers_in_highway == 0:

 # There is no residual layers, no need for batch_norm:

 return input_tensor

 with tf.variable_scope("batch_norm") as scope:

 if i != 0:

 # Do not create extra variables for each time step

 scope.reuse_variables()

 # Mean and variance normalisation simply crunched over all axes

 axes = list(range(len(input_tensor.get_shape())))

 mean, variance = tf.nn.moments(input_tensor, axes=axes, shift=None, name=None,

146

keep_dims=False)

 stdev = tf.sqrt(variance+0.001)

 # Rescaling

 bn = input_tensor - mean

 bn /= stdev

 # Learnable extra rescaling

 # tf.get_variable("relu_fc_weights", initializer=tf.random_normal(mean=0.0,

stddev=0.0)

 bn *= tf.get_variable("a_noreg", initializer=tf.random_normal([1], mean=0.5,

stddev=0.0))

 bn += tf.get_variable("b_noreg", initializer=tf.random_normal([1], mean=0.0,

stddev=0.0))

 # bn *= tf.Variable(0.5, name=(scope.name + "/a_noreg"))

 # bn += tf.Variable(0.0, name=(scope.name + "/b_noreg"))

 return bn

def relu_fc(input_2D_tensor_list, features_len, new_features_len, config):

 """make a relu fully-connected layer, mainly change the shape of tensor

 both input and output is a list of tensor

 argument:

 input_2D_tensor_list: list shape is [batch_size,feature_num]

 features_len: int the initial features length of input_2D_tensor

 new_feature_len: int the final features length of output_2D_tensor

 config: Config used for weights initializers

 return:

147

 output_2D_tensor_list lit shape is [batch_size,new_feature_len]

 """

 W = tf.get_variable(

 "relu_fc_weights",

 initializer=tf.random_normal(

 [features_len, new_features_len],

 mean=0.0,

 stddev=float(config.weights_stddev)

)

)

 b = tf.get_variable(

 "relu_fc_biases_noreg",

 initializer=tf.random_normal(

 [new_features_len],

 mean=float(config.bias_mean),

 stddev=float(config.weights_stddev)

)

)

 # intra-timestep multiplication:

 output_2D_tensor_list = [

 tf.nn.relu(tf.matmul(input_2D_tensor, W) + b)

 for input_2D_tensor in input_2D_tensor_list

]

 return output_2D_tensor_list

148

def single_LSTM_cell(input_hidden_tensor, n_outputs):

 """ define the basic LSTM layer

 argument:

 input_hidden_tensor: list a list of tensor,

 shape: time_steps*[batch_size,n_inputs]

 n_outputs: int num of LSTM layer output

 return:

 outputs: list a time_steps list of tensor,

 shape: time_steps*[batch_size,n_outputs]

 """

 with tf.variable_scope("lstm_cell"):

 lstm_cell = tf.nn.rnn_cell.LSTMCell(n_outputs, state_is_tuple=True,

forget_bias=0.999)

 outputs, _ = tf.nn.static_rnn(lstm_cell, input_hidden_tensor, dtype=tf.float32)

 return outputs

def bi_LSTM_cell(input_hidden_tensor, n_inputs, n_outputs, config):

 """build bi-LSTM, concatenating the two directions in an inner manner.

 argument:

 input_hidden_tensor: list a time_steps series of tensor, shape: [sample_num,

n_inputs]

 n_inputs: int units of input tensor

 n_outputs: int units of output tensor, each bi-LSTM will have half those internal

units

 config: Config used for the relu_fc

 return:

149

 layer_hidden_outputs: list a time_steps series of tensor, shape: [sample_num,

n_outputs]

 """

 n_outputs = int(n_outputs/2)

 print ("bidir:")

 with tf.variable_scope('pass_forward') as scope2:

 hidden_forward = relu_fc(input_hidden_tensor, n_inputs, n_outputs, config)

 forward = single_LSTM_cell(hidden_forward, n_outputs)

 print (len(hidden_forward), str(hidden_forward[0].get_shape()))

 # Backward pass is as simple as surrounding the cell with a double inversion:

 with tf.variable_scope('pass_backward') as scope2:

 hidden_backward = relu_fc(input_hidden_tensor, n_inputs, n_outputs, config)

 backward = list(reversed(single_LSTM_cell(list(reversed(hidden_backward)),

n_outputs)))

 with tf.variable_scope('bidir_concat') as scope:

 # Simply concatenating cells' outputs at each timesteps on the innermost

 # dimension, like if the two cells acted as one cell

 # with twice the n_hidden size:

 layer_hidden_outputs = [

 tf.concat([f, b], len(f.get_shape()) - 1)

 for f, b in zip(forward, backward)]

 return layer_hidden_outputs

150

def residual_bidirectional_LSTM_layers(input_hidden_tensor, n_input, n_output,

layer_level, config, keep_prob_for_dropout):

 """This architecture is only enabled if "config.n_layers_in_highway" has a

 value only greater than int(0). The arguments are same than for bi_LSTM_cell.

 arguments:

 input_hidden_tensor: list a time_steps series of tensor, shape: [sample_num,

n_inputs]

 n_inputs: int units of input tensor

 n_outputs: int units of output tensor, each bi-LSTM will have half those internal

units

 config: Config used for determining if there are residual connections and if yes, their

number and with some batch_norm.

 return:

 layer_hidden_outputs: list a time_steps series of tensor, shape: [sample_num,

n_outputs]

 """

 with tf.variable_scope('layer_{}'.format(layer_level)) as scope:

 if config.use_bidirectionnal_cells:

 get_lstm = lambda input_tensor: bi_LSTM_cell(input_tensor, n_input, n_output,

config)

 else:

 get_lstm = lambda input_tensor: single_LSTM_cell(relu_fc(input_tensor,

n_input, n_output, config), n_output)

 def add_highway_redisual(layer, residual_minilayer):

 return [a + b for a, b in zip(layer, residual_minilayer)]

151

 hidden_LSTM_layer = get_lstm(input_hidden_tensor)

 # Adding K new (residual bidir) connections to this first layer:

 for i in range(config.n_layers_in_highway - 1):

 with tf.variable_scope('LSTM_residual_{}'.format(i)) as scope2:

 hidden_LSTM_layer = add_highway_redisual(

 hidden_LSTM_layer,

 get_lstm(input_hidden_tensor)

)

 if config.also_add_dropout_between_stacked_cells:

 hidden_LSTM_layer = [tf.nn.dropout(out, keep_prob_for_dropout) for out in

hidden_LSTM_layer]

 return [batch_norm(out, config, i) for i, out in enumerate(hidden_LSTM_layer)]

def LSTM_network(feature_mat, config, keep_prob_for_dropout):

 """model a LSTM Network,

 it stacks 2 LSTM layers, each layer has n_hidden=32 cells

 and 1 output layer, it is a full connet layer

 argument:

 feature_mat: ndarray fature matrix, shape=[batch_size,time_steps,n_inputs]

 config: class containing config of network

 return:

 : ndarray output shape [batch_size, n_classes]

 """

152

 with tf.variable_scope('LSTM_network') as scope: # TensorFlow graph naming

 feature_mat = tf.nn.dropout(feature_mat, keep_prob_for_dropout)

 # Exchange dim 1 and dim 0

 feature_mat = tf.transpose(feature_mat, [1, 0, 2])

 print (feature_mat.get_shape())

 # New feature_mat's shape: [time_steps, batch_size, n_inputs]

 # Temporarily crush the feature_mat's dimensions

 feature_mat = tf.reshape(feature_mat, [-1, config.n_inputs])

 print (feature_mat.get_shape())

 # New feature_mat's shape: [time_steps*batch_size, n_inputs]

 # Split the series because the rnn cell needs time_steps features, each of shape:

 hidden = tf.split(feature_mat, config.n_steps, 0)

 print (len(hidden), str(hidden[0].get_shape()))

 # New shape: a list of lenght "time_step" containing tensors of shape [batch_size,

n_hidden]

 # Stacking LSTM cells, at least one is stacked:

 print ("\nCreating hidden #1:")

 hidden = residual_bidirectional_LSTM_layers(hidden, config.n_inputs,

config.n_hidden, 1, config, keep_prob_for_dropout)

 print (len(hidden), str(hidden[0].get_shape()))

 for stacked_hidden_index in range(config.n_stacked_layers - 1):

 # If the config permits it, we stack more lstm cells:

153

 print ("\nCreating hidden #{}:".format(stacked_hidden_index+2))

 hidden = residual_bidirectional_LSTM_layers(hidden, config.n_hidden,

config.n_hidden, stacked_hidden_index+2, config, keep_prob_for_dropout)

 print (len(hidden), str(hidden[0].get_shape()))

 print ("")

 # Final fully-connected activation logits

 # Get the last output tensor of the inner loop output series, of shape [batch_size,

n_classes]

 last_hidden = tf.nn.dropout(hidden[-1], keep_prob_for_dropout)

 last_logits = relu_fc(

 [last_hidden],

 config.n_hidden, config.n_classes, config

)[0]

 return last_logits

def run_with_config(Config, X_train, y_train, X_test, y_test):

 start_time = datetime.now()

 print ("Start Time: ",time.ctime())

 print ("")

 tf.reset_default_graph() # To enable to run multiple things in a loop

 #-----------------------------------

 # Define parameters for model

 #-----------------------------------

 config = Config(X_train, X_test)

154

 print("Some useful info to get an insight on dataset's shape and normalisation:")

 print("features shape, labels shape, each features mean, each features standard

deviation")

 print(X_test.shape, y_test.shape,

 np.mean(X_test), np.std(X_test))

 print("the dataset is therefore properly normalised, as expected.")

 #--

 # Let's get serious and build the neural network

 #--

 with tf.device("/cpu:0"): # Remove this line to use GPU. If you have a too small GPU,

it crashes.

 #with tf.device('/gpu:0'):

 #with tf.device('/gpu:1'):

 #mirrored_strategy = tf.contrib.distribute.MirroredStrategy(devices=["/gpu:0",

"/gpu:1"])

 #with mirrored_strategy.scope():

 X = tf.placeholder(tf.float32, [

 None, config.n_steps, config.n_inputs], name="X")

 Y = tf.placeholder(tf.float32, [

 None, config.n_classes], name="Y")

 # is_train for dropout control:

 is_train = tf.placeholder(tf.bool, name="is_train")

 keep_prob_for_dropout = tf.cond(is_train,

 lambda: tf.constant(

 config.keep_prob_for_dropout,

 name="keep_prob_for_dropout"

155

),

 lambda: tf.constant(

 1.0,

 name="keep_prob_for_dropout"

)

)

 pred_y = LSTM_network(X, config, keep_prob_for_dropout)

 # Loss, optimizer, evaluation

 # Softmax loss with L2 and L1 layer-wise regularisation

 print ("Unregularised variables:")

 for unreg in [tf_var.name for tf_var in tf.trainable_variables() if ("noreg" in

tf_var.name or "Bias" in tf_var.name)]:

 print (unreg)

 l2 = config.lambda_loss_amount * sum(

 tf.nn.l2_loss(tf_var)

 for tf_var in tf.trainable_variables()

 if not ("noreg" in tf_var.name or "Bias" in tf_var.name)

)

 # first_weights = [w for w in tf.all_variables() if w.name ==

'LSTM_network/layer_1/pass_forward/relu_fc_weights:0'][0]

 # l1 = config.lambda_loss_amount * tf.reduce_mean(tf.abs(first_weights))

 loss = tf.reduce_mean(

 tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred_y,labels=Y)) + l2 # +

l1

156

 # Gradient clipping Adam optimizer with gradient noise

 optimize = tf.contrib.layers.optimize_loss(

 loss,

 global_step=tf.Variable(0),

 learning_rate=config.learning_rate,

 optimizer=tf.train.AdamOptimizer(learning_rate=config.learning_rate),

 clip_gradients=config.clip_gradients,

 gradient_noise_scale=config.gradient_noise_scale

)

 correct_pred = tf.equal(tf.argmax(pred_y, 1), tf.argmax(Y, 1))

 accuracy = tf.reduce_mean(tf.cast(correct_pred, dtype=tf.float32))

 #--

 # Hooray, now train the neural network

 #--

 # Note that log_device_placement can be turned of for less console spam.

 #sessconfig = tf.ConfigProto(log_device_placement=False)

 sessconfig = tf.ConfigProto(allow_soft_placement =

True,log_device_placement=False)

 #sessconfig.gpu_options.allow_growth = True

 with tf.Session(config=sessconfig) as sess:

 #init = tf.global_variables_initializer()

 sess.run(tf.global_variables_initializer())

 best_accuracy = (0.0, "iter: -1")

 best_f1_score = (0.0, "iter: -1")

157

 # Start training for each batch and loop epochs

 worst_batches = []

 for i in range(config.training_epochs):

 # Loop batches for an epoch:

 shuffled_X, shuffled_y = shuffle(X_train, y_train, random_state=i*42)

 for start, end in zip(range(0, config.train_count, config.batch_size),

 range(config.batch_size, config.train_count + 1, config.batch_size)):

 _, train_acc, train_loss, train_pred = sess.run(

 [optimize, accuracy, loss, pred_y],

 feed_dict={

 X: shuffled_X[start:end],

 Y: shuffled_y[start:end],

 is_train: True

 }

)

 worst_batches.append(

 (train_loss, shuffled_X[start:end], shuffled_y[start:end])

)

 worst_batches = list(sorted(worst_batches))[-5:] # Keep 5 poorest

 # Train F1 score is not on boosting

 train_f1_score = metrics.f1_score(

158

 shuffled_y[start:end].argmax(1), train_pred.argmax(1), average="weighted"

)

 # Retrain on top worst batches of this epoch (boosting):

 # a.k.a. "focus on the hardest exercises while training":

 for _, x_, y_ in worst_batches:

 _, train_acc, train_loss, train_pred = sess.run(

 [optimize, accuracy, loss, pred_y],

 feed_dict={

 X: x_,

 Y: y_,

 is_train: True

 }

)

 # Test completely at the end of every epoch:

 # Calculate accuracy and F1 score

 pred_out, accuracy_out, loss_out = sess.run(

 [pred_y, accuracy, loss],

 feed_dict={

 X: X_test,

 Y: y_test,

 is_train: False

 }

)

 # "y_test.argmax(1)": could be optimised by being computed once...

159

 f1_score_out = metrics.f1_score(

 y_test.argmax(1), pred_out.argmax(1), average="weighted"

)

 print (

 "iter: {}, ".format(i) + \

 "train loss: {}, ".format(train_loss) + \

 "train accuracy: {}, ".format(train_acc) + \

 "train F1-score: {}, ".format(train_f1_score) + \

 "test loss: {}, ".format(loss_out) + \

 "prediction accuracy: {}, ".format(accuracy_out) + \

 "test F1-score: {}".format(f1_score_out)

)

 best_accuracy = max(best_accuracy, (accuracy_out, "iter: {}".format(i)))

 best_f1_score = max(best_f1_score, (f1_score_out, "iter: {}".format(i)))

 print("")

 print("final prediction accuracy: {}".format(accuracy_out))

 print("best epoch's prediction accuracy: {}".format(best_accuracy))

 print("final F1 score: {}".format(f1_score_out))

 print("best epoch's F1 score: {}".format(best_f1_score))

 print("")

 end_time = datetime.now()

 print("End Time: ",time.ctime())

 print("Exec Duration: {}".format(end_time - start_time))

 print("")

160

 # returning both final and bests accuracies and f1 scores.

 return accuracy_out, best_accuracy, f1_score_out, best_f1_score

Config_Dataset_HAR.py

#!/usr/bin/env python

coding: utf-8

In[]:

__author__ = 'jkranbir'

Note: Linux bash commands start with a "!" inside those "ipython notebook" cells

import os

DATA_PATH = "data/"

get_ipython().system('pwd && ls')

os.chdir(DATA_PATH)

get_ipython().system('pwd && ls')

get_ipython().system('python download_datasets.py')

get_ipython().system('pwd && ls')

os.chdir("..")

get_ipython().system('pwd && ls')

DATASET_PATH = DATA_PATH + "UCI HAR Dataset/"

print("\n" + "Dataset is now located at: " + DATASET_PATH)

In[]:

__author__ = 'jkranbir'

161

from lstm_architecture import one_hot, run_with_config

import numpy as np

import os

#os.environ["CUDA_VISIBLE_DEVICES"]="0,1"

#--

Neural net's config.

#--

class Config(object):

 """

 define a class to store parameters,

 the input should be feature mat of training and testing

 """

 def __init__(self, X_train, X_test):

 # Data shaping

 self.train_count = len(X_train) # 7352 training series

 self.test_data_count = len(X_test) # 2947 testing series

 self.n_steps = len(X_train[0]) # 128 time_steps per series

 self.n_classes = 6 # Final output classes

 # Training

 self.learning_rate = 0.001

 self.lambda_loss_amount = 0.005

 self.training_epochs = 250 #5

 self.batch_size = 100

 self.clip_gradients = 15.0

162

 self.gradient_noise_scale = None

 # Dropout is added on inputs and after each stacked layers (but not

 # between residual layers).

 self.keep_prob_for_dropout = 0.85 # **(1/3.0)

 # Linear+relu structure

 self.bias_mean = 0.3

 # I would recommend between 0.1 and 1.0 or to change and use a xavier

 # initializer

 self.weights_stddev = 0.2

 ########

 # NOTE: I think that if any of the below parameters are changed,

 # the best is to readjust every parameters in the "Training" section

 # above to properly compare the architectures only once optimised.

 ########

 # LSTM structure

 # Features count is of 9: three 3D sensors features over time

 self.n_inputs = len(X_train[0][0])

 self.n_hidden = 256 # nb of neurons inside the neural network

 # Use bidir in every LSTM cell, or not:

 self.use_bidirectionnal_cells = True #False

 # High-level deep architecture

 self.also_add_dropout_between_stacked_cells = False #True

 # NOTE: values of exactly 1 (int) for those 2 high-level parameters below totally

disables them and result in only 1 starting LSTM.

163

 # self.n_layers_in_highway = 1 # Number of residual connections to the LSTMs

(highway-style), this is did for each stacked block (inside them).

 # self.n_stacked_layers = 1 # Stack multiple blocks of residual

 # layers.

#--

Dataset-specific constants and functions + loading

#--

Useful Constants

Those are separate normalised input features for the neural network

INPUT_SIGNAL_TYPES = [

 "body_acc_x_",

 "body_acc_y_",

 "body_acc_z_",

 "body_gyro_x_",

 "body_gyro_y_",

 "body_gyro_z_",

 "total_acc_x_",

 "total_acc_y_",

 "total_acc_z_"

]

Output classes to learn how to classify

LABELS = [

 "WALKING",

 "WALKING_UPSTAIRS",

164

 "WALKING_DOWNSTAIRS",

 "SITTING",

 "STANDING",

 "LAYING"

]

DATA_PATH = "data/"

DATASET_PATH = DATA_PATH + "UCI HAR Dataset/"

TRAIN = "train/"

TEST = "test/"

Load "X" (the neural network's training and testing inputs)

def load_X(X_signals_paths):

 """

 Given attribute (train or test) of feature, read all 9 features into an

 np ndarray of shape [sample_sequence_idx, time_step, feature_num]

 argument: X_signals_paths str attribute of feature: 'train' or 'test'

 return: np ndarray, tensor of features

 """

 X_signals = []

 for signal_type_path in X_signals_paths:

 file = open(signal_type_path, 'r')

 # Read dataset from disk, dealing with text files' syntax

 X_signals.append(

165

 [np.array(serie, dtype=np.float32) for serie in [

 row.replace(' ', ' ').strip().split(' ') for row in file

]]

)

 file.close()

 return np.transpose(np.array(X_signals), (1, 2, 0))

X_train_signals_paths = [

 DATASET_PATH + TRAIN + "Inertial Signals/" + signal + "train.txt" for signal in

INPUT_SIGNAL_TYPES

]

X_test_signals_paths = [

 DATASET_PATH + TEST + "Inertial Signals/" + signal + "test.txt" for signal in

INPUT_SIGNAL_TYPES

]

X_train = load_X(X_train_signals_paths)

X_test = load_X(X_test_signals_paths)

Load "y" (the neural network's training and testing outputs)

def load_y(y_path):

 """

 Read Y file of values to be predicted

 argument: y_path str attibute of Y: 'train' or 'test'

 return: Y ndarray / tensor of the 6 one_hot labels of each sample

 """

 file = open(y_path, 'r')

 # Read dataset from disk, dealing with text file's syntax

 y_ = np.array(

 [elem for elem in [

166

 row.replace(' ', ' ').strip().split(' ') for row in file

]],

 dtype=np.int32

)

 file.close()

 # Substract 1 to each output class for friendly 0-based indexing

 return one_hot(y_ - 1)

y_train_path = DATASET_PATH + TRAIN + "y_train.txt"

y_test_path = DATASET_PATH + TEST + "y_test.txt"

y_train = load_y(y_train_path)

y_test = load_y(y_test_path)

#--

Training (maybe multiple) experiment(s)

#--

n_layers_in_highway = 4

n_stacked_layers = 4

trial_name = "{}x{}".format(n_layers_in_highway, n_stacked_layers)

for learning_rate in [0.001]: # [0.01, 0.001, 0.0001]:

 for lambda_loss_amount in [0.005]:

 for clip_gradients in [15.0]:

 print ("learning_rate: {}".format(learning_rate))

 print ("lambda_loss_amount: {}".format(lambda_loss_amount))

 print ("")

167

 class EditedConfig(Config):

 def __init__(self, X, Y):

 super(EditedConfig, self).__init__(X, Y)

 # Edit only some parameters:

 self.learning_rate = learning_rate

 self.lambda_loss_amount = lambda_loss_amount

 self.clip_gradients = clip_gradients

 # Architecture params:

 self.n_layers_in_highway = n_layers_in_highway

 self.n_stacked_layers = n_stacked_layers

 # # Useful catch upon looping (e.g.: not enough memory)

 # try:

 # accuracy_out, best_accuracy = run_with_config(EditedConfig)

 # except:

 # accuracy_out, best_accuracy = -1, -1

 accuracy_out, best_accuracy, f1_score_out, best_f1_score = (

 run_with_config(EditedConfig, X_train, y_train, X_test, y_test)

)

 print (accuracy_out, best_accuracy, f1_score_out, best_f1_score)

 with open('{}_result_HAR_6.txt'.format(trial_name), 'a') as f:

 f.write(str(learning_rate) + ' \t' + str(lambda_loss_amount) + ' \t' +

str(clip_gradients) + ' \t' + str(

 accuracy_out) + ' \t' + str(best_accuracy) + ' \t' + str(f1_score_out) + ' \t' +

str(best_f1_score) + '\n\n')

168

 print ("__")

 print ("")

print ("Done.")

In[]:

B.2 PyTorch Code

Script.py

__author__ = 'jkranbir'

Note: Linux bash commands start with a "!" inside those "ipython notebook" cells

import os

DATA_PATH = "data/"

!pwd && ls

os.chdir(DATA_PATH)

!pwd && ls

!python download_datasets.py

!pwd && ls

os.chdir("..")

!pwd && ls

169

DATASET_PATH = DATA_PATH + "UCI HAR Dataset/"

print("\n" + "Dataset is now located at: " + DATASET_PATH)

network_1.py

encoding=utf-8

"""

 Created on 12:48 2019/03/10

 @author: Jagadish Kumar Ranbirsingh

"""

import torch.nn as nn

import torch.nn.functional as F

class Network(nn.Module):

 def __init__(self):

 super(Network, self).__init__()

 self.conv1 = nn.Sequential(

 nn.Conv2d(in_channels=9, out_channels=32, kernel_size=(1, 9)),

 # nn.BatchNorm1d()

 nn.ReLU(),

 nn.MaxPool2d(kernel_size=(1, 2), stride=2)

)

 self.conv2 = nn.Sequential(

170

 nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(1, 9)),

 nn.ReLU(),

 nn.MaxPool2d(kernel_size=(1, 2), stride=2)

)

 self.fc1 = nn.Sequential(

 nn.Linear(in_features=64 * 26, out_features=1000),

 nn.ReLU()

)

 self.fc2 = nn.Sequential(

 nn.Linear(in_features=1000, out_features=500),

 nn.ReLU()

)

 self.fc3 = nn.Sequential(

 nn.Linear(in_features=500, out_features=6)

)

 def forward(self, x):

 out = self.conv1(x)

 out = self.conv2(out)

 out = out.reshape(-1, 64 * 26)

 out = self.fc1(out)

 out = self.fc2(out)

 out = self.fc3(out)

 out = F.softmax(out, dim=1)

 return out

network.py

171

encoding=utf-8

"""

 Created on 12:48 2019/03/10

 @author: Jagadish Kumar Ranbirsingh

"""

import torch.nn as nn

import torch.nn.functional as F

class CNN(nn.Module):

 def __init__(self):

 super(CNN, self).__init__()

 self.conv1 = nn.Sequential(

 nn.Conv2d(in_channels=9, out_channels=32, kernel_size=(1, 9)),

 # nn.BatchNorm1d()

 nn.ReLU(),

 nn.MaxPool2d(kernel_size=(1, 2), stride=2)

)

 self.conv2 = nn.Sequential(

 nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(1, 9)),

 nn.ReLU(),

 nn.MaxPool2d(kernel_size=(1, 2), stride=2)

)

 self.conv2_drop = nn.Dropout2d()

 self.fc1 = nn.Sequential(

 nn.Linear(in_features=64 * 26, out_features=1000),

 nn.ReLU()

172

)

 self.fc2 = nn.Sequential(

 nn.Linear(in_features=1000, out_features=500),

 nn.ReLU()

)

 self.fc3 = nn.Sequential(

 nn.Linear(in_features=500, out_features=6)

)

 def forward(self, x):

 out = self.conv1(x)

 out = self.conv2_drop(self.conv2(out))

 out = out.view(-1, 64 * 26)

 out = self.fc1(out)

 out = self.fc2(out)

 out = self.fc3(out)

 return out

class Network(nn.Module):

 def __init__(self):

 super(Network, self).__init__()

 self.cnn = CNN()

 self.rnn = nn.LSTM(64 * 26, 6, 2)

 def forward(self, x):

 out = self.cnn(x)

 out = self.rnn(out)

 out = F.softmax(out, dim=1)

 return out

173

data_preprocess.py

encoding=utf-8

"""

 Created on 07:51 2019/03/10

 @author: Jagadish Kumar Ranbirsingh

"""

import numpy as np

from torch.utils.data import Dataset, DataLoader

from torchvision import transforms

This is for parsing the X data, you can ignore it if you do not need preprocessing

def format_data_x(datafile):

 x_data = None

 for item in datafile:

 item_data = np.loadtxt(item, dtype=np.float)

 if x_data is None:

 x_data = np.zeros((len(item_data), 1))

 x_data = np.hstack((x_data, item_data))

 x_data = x_data[:, 1:]

 print(x_data.shape)

 X = None

 for i in range(len(x_data)):

 row = np.asarray(x_data[i, :])

 row = row.reshape(9, 128).T

 if X is None:

 X = np.zeros((len(x_data), 128, 9))

174

 X[i] = row

 print(X.shape)

 return X

This is for parsing the Y data, you can ignore it if you do not need preprocessing

def format_data_y(datafile):

 data = np.loadtxt(datafile, dtype=np.int) - 1

 YY = np.eye(6)[data]

 return YY

 # This for processing the dataset from scratch

 # After script downloading the dataset, program put it in the DATA_PATH folder

def load_data():

 DATA_PATH = 'data/'

 DATASET_PATH = DATA_PATH + 'UCI HAR Dataset/'

 TRAIN = 'train/'

 TEST = 'test/'

 INPUT_SIGNAL_TYPES = [

 "body_acc_x_",

 "body_acc_y_",

 "body_acc_z_",

 "body_gyro_x_",

 "body_gyro_y_",

 "body_gyro_z_",

 "total_acc_x_",

 "total_acc_y_",

175

 "total_acc_z_"

]

 str_train_files = [DATASET_PATH + TRAIN + 'Inertial Signals/' + item + 'train.txt'

for item in

 INPUT_SIGNAL_TYPES]

 str_test_files = [DATASET_PATH + TEST + 'Inertial Signals/' + item + 'test.txt' for

item in INPUT_SIGNAL_TYPES]

 str_train_y = DATASET_PATH + TRAIN + 'y_train.txt'

 str_test_y = DATASET_PATH + TEST + 'y_test.txt'

 X_train = format_data_x(str_train_files)

 X_test = format_data_x(str_test_files)

 Y_train = format_data_y(str_train_y)

 Y_test = format_data_y(str_test_y)

 return X_train, onehot_to_label(Y_train), X_test, onehot_to_label(Y_test)

def onehot_to_label(y_onehot):

 a = np.argwhere(y_onehot == 1)

 return a[:, -1]

class data_loader(Dataset):

 def __init__(self, samples, labels, t):

 self.samples = samples

 self.labels = labels

 self.T = t

 def __getitem__(self, index):

 sample, target = self.samples[index], self.labels[index]

 return self.T(sample), target

176

 def __len__(self):

 return len(self.samples)

def load(batch_size=100):

 x_train, y_train, x_test, y_test = load_data()

 x_train, x_test = x_train.reshape((-1, 9, 1, 128)), x_test.reshape((-1, 9, 1, 128))

 transform = transforms.Compose([

 transforms.ToTensor(),

 transforms.Normalize(mean=(0,0,0,0,0,0,0,0,0), std=(1,1,1,1,1,1,1,1,1))

])

 train_set = data_loader(x_train, y_train, transform)

 test_set = data_loader(x_test, y_test, transform)

 train_loader = DataLoader(train_set, batch_size=batch_size, num_workers=8,

pin_memory=True, shuffle=True, drop_last=True)

 test_loader = DataLoader(test_set, batch_size=batch_size, num_workers=8,

pin_memory=True, shuffle=False)

 return train_loader, test_loader

Config_Dataset_HAR.py

#!/usr/bin/env python

coding: utf-8

In[]:

__author__ = 'jkranbir'

Note: Linux bash commands start with a "!" inside those "ipython notebook" cells

import os

177

DATA_PATH = "data/"

get_ipython().system('pwd && ls')

os.chdir(DATA_PATH)

get_ipython().system('pwd && ls')

get_ipython().system('python download_datasets.py')

get_ipython().system('pwd && ls')

os.chdir("..")

get_ipython().system('pwd && ls')

DATASET_PATH = DATA_PATH + "UCI HAR Dataset/"

print("\n" + "Dataset is now located at: " + DATASET_PATH)

In[]:

encoding=utf-8

"""

 Created on 09:41 2019/03/10

 @author: Jagadish Kumar Ranbirsingh

"""

import data_preprocess

import matplotlib.pyplot as plt

import network as net

import numpy as np

import torch

import torch.nn as nn

import torch.optim as optim

import tqdm

from datetime import datetime

178

import time

BATCH_SIZE = 100 #256

N_EPOCH = 10 * 250 #250 In dataset 7352 training series

LEARNING_RATE = 0.001

DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

print('Device :',DEVICE)

print('Device Count',torch.cuda.device_count())

print('Current Device:',torch.cuda.get_device_name(torch.cuda.current_device()))

result = []

def train(model, optimizer, train_loader, test_loader):

 n_batch = len(train_loader.dataset) // BATCH_SIZE

 print('n_batch',n_batch)

 criterion = nn.CrossEntropyLoss()

 for e in range(N_EPOCH):

 model.train()

 correct, total_loss = 0, 0

 total = 0

 for index, (sample, target) in enumerate(train_loader):

 sample, target = sample.to(DEVICE).float(), target.to(DEVICE).long()

 sample = sample.view(-1, 9, 1, 128)

 output = model(sample)

 loss = criterion(output, target)

 optimizer.zero_grad()

 loss.backward()

 optimizer.step()

179

 total_loss += loss.item()

 _, predicted = torch.max(output.data, 1)

 total += target.size(0)

 correct += (predicted == target).sum()

 if index % 20 == 0:

 tqdm.tqdm.write('Epoch: [{}/{}], Batch: [{}/{}], loss:{:.4f}'.format(e + 1,

N_EPOCH, index + 1, n_batch, loss.item()))

 acc_train = float(correct) * 100.0 / (BATCH_SIZE * n_batch)

 tqdm.tqdm.write(

 'Epoch: [{}/{}], loss: {:.4f}, train acc: {:.2f}%'.format(e + 1, N_EPOCH,

total_loss * 1.0 / n_batch, acc_train))

 # Testing

 model.train(False)

 with torch.no_grad():

 correct, total = 0, 0

 for sample, target in test_loader:

 sample, target = sample.to(DEVICE).float(), target.to(DEVICE).long()

 sample = sample.view(-1, 9, 1, 128)

 output = model(sample)

 _, predicted = torch.max(output.data, 1)

 total += target.size(0)

 correct += (predicted == target).sum()

 acc_test = float(correct) * 100 / total

 tqdm.tqdm.write('Epoch: [{}/{}], test acc: {:.2f}%'.format(e + 1, N_EPOCH,

180

float(correct) * 100 / total))

 result.append([acc_train, acc_test])

 result_np = np.array(result, dtype=float)

 np.savetxt('result.csv', result_np, fmt='%.2f', delimiter=',')

def plot():

 data = np.loadtxt('result.csv', delimiter=',')

 plt.figure()

 plt.plot(range(1, len(data[:, 0]) + 1), data[:, 0], color='blue', label='train')

 plt.plot(range(1, len(data[:, 1]) + 1), data[:, 1], color='red', label='test')

 plt.legend()

 plt.xlabel('Epoch', fontsize=14)

 plt.ylabel('Accuracy (%)', fontsize=14)

 plt.title('Training and Prediction Accuracy', fontsize=20)

if __name__ == '__main__':

 torch.cuda.manual_seed_all(10)

 start_time = datetime.now()

 print ("Start Time: ",time.ctime())

 print ("")

 train_loader, test_loader = data_preprocess.load(batch_size=BATCH_SIZE)

 model = net.Network()

 model = model.to(DEVICE)

 #torch.distributed.init_process_group(backend="nccl")

 #model = torch.nn.parallel.DistributedDataParallel(model)

 optimizer = optim.SGD(params=model.parameters(), lr=LEARNING_RATE,

momentum=0.9)

 train(model, optimizer, train_loader, test_loader)

181

 result = np.array(result, dtype=float)

 np.savetxt('result.csv', result, fmt='%.2f', delimiter=',')

 plot()

 print("")

 end_time = datetime.now()

 print("End Time: ",time.ctime())

 print("Exec Duration: {}".format(end_time - start_time))

 print("")

In[]:

data/download_datasets.py : It’s same as TensorFlow.

B.3 Raspberry PI Cluster – Monte Carlo Simulation

server.py

import sys

import tensorflow as tf

import netifaces as ni

def getIpAddr():

 ni.ifaddresses("eth0")

 ip = ni.ifaddresses("eth0")[ni.AF_INET][0]["addr"]

 return ip

182

taskList =

["192.168.1.16:1024","192.168.1.17:1024","192.168.1.18:1024","192.168.1.19:1024",

"192.168.1.20:1024","192.168.1.21:1024","192.168.1.22:1024","192.168.1.23:1024",

"192.168.1.24:1024","192.168.1.25:1024","192.168.1.26:1024","192.168.1.27:1024",

"192.168.1.28:1024","192.168.1.29:1024","192.168.1.30:1024","192.168.1.31:1024"]

taskName = getIpAddr()+":1024"

try:

 taskNum = taskList.index(taskName)

except ValueError:

 print(" Unable to find " + taskName + " in the task List.")

 quit()

cluster = tf.train.ClusterSpec({"local":taskList})

server = tf.train.Server(cluster,job_name="local",task_index=taskNum)

server.join()

client.py

import tensorflow as tf

import numpy as np

import math

import time

start = time.time()

size = int(1*math.pow(10,6))

183

taskList =

["192.168.1.16:1024","192.168.1.17:1024","192.168.1.18:1024","192.168.1.19:1024",

"192.168.1.20:1024","192.168.1.21:1024","192.168.1.22:1024","192.168.1.23:1024",

"192.168.1.24:1024","192.168.1.25:1024","192.168.1.26:1024","192.168.1.27:1024",

"192.168.1.28:1024","192.168.1.29:1024","192.168.1.30:1024","192.168.1.31:1024"]

taskCount = len(taskList)

n = size//taskCount

r = size % taskCount

cluster = tf.train.ClusterSpec({"local":taskList})

total = tf.Variable(0,dtype=tf.float32)

for i in range(0,taskCount):

 if (i==0):

 sampleSize = n + r

 else:

 sampleSize = n

 deviceName = "/job:local/task:"+str(i)

 with tf.device(deviceName):

 pointList = tf.random_uniform(shape=[sampleSize,2],minval=-

1,maxval=1,dtype=tf.float32)

 distanceList = tf.sqrt(tf.reduce_sum(tf.pow(pointList,2),1))

 boolList = tf.less(distanceList,1)

 circleCount = tf.reduce_sum(tf.cast(boolList,tf.float32))

184

 total = total + circleCount

 print("task:",i," sampleSize: ",sampleSize)

with tf.Session("grpc://localhost:1024") as sess:

 sess.run(tf.global_variables_initializer())

 pi = sess.run(4*(total/size))

 print("pi:",pi)

end = time.time()

totalTime = end - start

print("Time: {:,3f}".format(totalTime))

B.4 Raspberry PI Cluster Code

lstm_architecture.py

__author__ = 'jk_ranbir'

import tensorflow as tf

from sklearn import metrics

from sklearn.utils import shuffle

import numpy as np

from datetime import datetime

import time

import sys

#import tensorflow as tf

import netifaces as ni

185

def getIpAddr():

 ni.ifaddresses("eth0")

 ip = ni.ifaddresses("eth0")[ni.AF_INET][0]["addr"]

 return ip

tf.app.flags.DEFINE_string("job_name", "", "Either 'ps' or 'worker'")

FLAGS = tf.app.flags.FLAGS

parameter_servers = ["192.168.1.26:1024"]

workers =

["192.168.1.16:1024","192.168.1.17:1024","192.168.1.18:1024","192.168.1.19:1024",

"192.168.1.20:1024","192.168.1.21:1024","192.168.1.22:1024","192.168.1.23:1024",

"192.168.1.24:1024","192.168.1.25:1024","192.168.1.26:1024","192.168.1.27:1024",

"192.168.1.28:1024","192.168.1.29:1024","192.168.1.30:1024","192.168.1.31:1024"]

taskName = getIpAddr()+":1024"

try:

 taskNum = workers.index(taskName)

except ValueError:

 print(" Unable to find " + taskName + " in the worker group.")

 quit()

 cluster = tf.train.ClusterSpec({"ps":parameter_servers, "worker":workers})

186

 server = tf.train.Server(cluster,job_name=FLAGS.job_name,task_index=taskNum)

if FLAGS.job_name == "ps":

 server.join()

elif FLAGS.job_name == "worker":

 def one_hot(y):

 """convert label from dense to one hot

 argument:

 label: ndarray dense label ,shape: [sample_num,1]

 return:

 one_hot_label: ndarray one hot, shape: [sample_num,n_class]

 """

 # e.g.: [[5], [0], [3]] --> [[0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]]

 y = y.reshape(len(y))

 n_values = np.max(y) + 1

 return np.eye(n_values)[np.array(y, dtype=np.int32)] # Returns FLOATS

 def batch_norm(input_tensor, config, i):

 # Implementing batch normalisation: this is used out of the residual layers

 # to normalise those output neurons by mean and standard deviation.

 if config.n_layers_in_highway == 0:

 # There is no residual layers, no need for batch_norm:

 return input_tensor

 with tf.variable_scope("batch_norm") as scope:

 if i != 0:

187

 # Do not create extra variables for each time step

 scope.reuse_variables()

 # Mean and variance normalisation simply crunched over all axes

 axes = list(range(len(input_tensor.get_shape())))

 mean, variance = tf.nn.moments(input_tensor, axes=axes, shift=None,

name=None, keep_dims=False)

 stdev = tf.sqrt(variance+0.001)

 # Rescaling

 bn = input_tensor - mean

 bn /= stdev

 # Learnable extra rescaling

 # tf.get_variable("relu_fc_weights",

initializer=tf.random_normal(mean=0.0, stddev=0.0)

 bn *= tf.get_variable("a_noreg", initializer=tf.random_normal([1],

mean=0.5, stddev=0.0))

 bn += tf.get_variable("b_noreg", initializer=tf.random_normal([1],

mean=0.0, stddev=0.0))

 # bn *= tf.Variable(0.5, name=(scope.name + "/a_noreg"))

 # bn += tf.Variable(0.0, name=(scope.name + "/b_noreg"))

 return bn

 def relu_fc(input_2D_tensor_list, features_len, new_features_len, config):

 """make a relu fully-connected layer, mainly change the shape of tensor

 both input and output is a list of tensor

 argument:

 input_2D_tensor_list: list shape is [batch_size,feature_num]

 features_len: int the initial features length of input_2D_tensor

 new_feature_len: int the final features length of output_2D_tensor

188

 config: Config used for weights initializers

 return:

 output_2D_tensor_list lit shape is [batch_size,new_feature_len]

 """

 W = tf.get_variable(

 "relu_fc_weights",

 initializer=tf.random_normal(

 [features_len, new_features_len],

 mean=0.0,

 stddev=float(config.weights_stddev)

)

)

 b = tf.get_variable(

 "relu_fc_biases_noreg",

 initializer=tf.random_normal(

 [new_features_len],

 mean=float(config.bias_mean),

 stddev=float(config.weights_stddev)

)

)

 # intra-timestep multiplication:

 output_2D_tensor_list = [

 tf.nn.relu(tf.matmul(input_2D_tensor, W) + b)

 for input_2D_tensor in input_2D_tensor_list

]

 return output_2D_tensor_list

 def single_LSTM_cell(input_hidden_tensor, n_outputs):

 """ define the basic LSTM layer

189

 argument:

 input_hidden_tensor: list a list of tensor,

 shape: time_steps*[batch_size,n_inputs]

 n_outputs: int num of LSTM layer output

 return:

 outputs: list a time_steps list of tensor,

 shape: time_steps*[batch_size,n_outputs]

 """

 with tf.variable_scope("lstm_cell"):

 lstm_cell = tf.nn.rnn_cell.LSTMCell(n_outputs, state_is_tuple=True,

forget_bias=0.999)

 outputs, _ = tf.nn.static_rnn(lstm_cell, input_hidden_tensor,

dtype=tf.float32)

 return outputs

 def bi_LSTM_cell(input_hidden_tensor, n_inputs, n_outputs, config):

 """build bi-LSTM, concatenating the two directions in an inner manner.

 argument:

 input_hidden_tensor: list a time_steps series of tensor, shape:

[sample_num, n_inputs]

 n_inputs: int units of input tensor

 n_outputs: int units of output tensor, each bi-LSTM will have half those

internal units

 config: Config used for the relu_fc

 return:

 layer_hidden_outputs: list a time_steps series of tensor, shape:

[sample_num, n_outputs]

 """

 n_outputs = int(n_outputs/2)

190

 print ("bidir:")

 with tf.variable_scope('pass_forward') as scope2:

 hidden_forward = relu_fc(input_hidden_tensor, n_inputs, n_outputs,

config)

 forward = single_LSTM_cell(hidden_forward, n_outputs)

 print (len(hidden_forward), str(hidden_forward[0].get_shape()))

 # Backward pass is as simple as surrounding the cell with a double inversion:

 with tf.variable_scope('pass_backward') as scope2:

 hidden_backward = relu_fc(input_hidden_tensor, n_inputs, n_outputs,

config)

 backward =

list(reversed(single_LSTM_cell(list(reversed(hidden_backward)), n_outputs)))

 with tf.variable_scope('bidir_concat') as scope:

 # Simply concatenating cells' outputs at each timesteps on the innermost

 # dimension, like if the two cells acted as one cell

 # with twice the n_hidden size:

 layer_hidden_outputs = [

 tf.concat([f, b], len(f.get_shape()) - 1)

 for f, b in zip(forward, backward)]

 return layer_hidden_outputs

 def residual_bidirectional_LSTM_layers(input_hidden_tensor, n_input, n_output,

layer_level, config, keep_prob_for_dropout):

 """This architecture is only enabled if "config.n_layers_in_highway" has a

 value only greater than int(0). The arguments are same than for bi_LSTM_cell.

 arguments:

191

 input_hidden_tensor: list a time_steps series of tensor, shape:

[sample_num, n_inputs]

 n_inputs: int units of input tensor

 n_outputs: int units of output tensor, each bi-LSTM will have half those

internal units

 config: Config used for determining if there are residual connections and

if yes, their number and with some batch_norm.

 return:

 layer_hidden_outputs: list a time_steps series of tensor, shape:

[sample_num, n_outputs]

 """

 with tf.variable_scope('layer_{}'.format(layer_level)) as scope:

 if config.use_bidirectionnal_cells:

 get_lstm = lambda input_tensor: bi_LSTM_cell(input_tensor, n_input,

n_output, config)

 else:

 get_lstm = lambda input_tensor:

single_LSTM_cell(relu_fc(input_tensor, n_input, n_output, config), n_output)

 def add_highway_redisual(layer, residual_minilayer):

 return [a + b for a, b in zip(layer, residual_minilayer)]

 hidden_LSTM_layer = get_lstm(input_hidden_tensor)

 # Adding K new (residual bidir) connections to this first layer:

 for i in range(config.n_layers_in_highway - 1):

 with tf.variable_scope('LSTM_residual_{}'.format(i)) as scope2:

 hidden_LSTM_layer = add_highway_redisual(

 hidden_LSTM_layer,

192

 get_lstm(input_hidden_tensor))

 if config.also_add_dropout_between_stacked_cells:

 hidden_LSTM_layer = [tf.nn.dropout(out, keep_prob_for_dropout) for

out in hidden_LSTM_layer]

 return [batch_norm(out, config, i) for i, out in

enumerate(hidden_LSTM_layer)]

 def LSTM_network(feature_mat, config, keep_prob_for_dropout):

 """model a LSTM Network,

 it stacks 2 LSTM layers, each layer has n_hidden=32 cells

 and 1 output layer, it is a full connet layer

 argument:

 feature_mat: ndarray fature matrix,

shape=[batch_size,time_steps,n_inputs]

 config: class containing config of network

 return:

 : ndarray output shape [batch_size, n_classes]

 """

 with tf.variable_scope('LSTM_network') as scope: # TensorFlow graph

naming

 feature_mat = tf.nn.dropout(feature_mat, keep_prob_for_dropout)

 # Exchange dim 1 and dim 0

 feature_mat = tf.transpose(feature_mat, [1, 0, 2])

 print (feature_mat.get_shape())

 # New feature_mat's shape: [time_steps, batch_size, n_inputs]

 # Temporarily crush the feature_mat's dimensions

 feature_mat = tf.reshape(feature_mat, [-1, config.n_inputs])

193

 print (feature_mat.get_shape())

 # New feature_mat's shape: [time_steps*batch_size, n_inputs]

 # Split the series because the rnn cell needs time_steps features, each of

shape:

 hidden = tf.split(feature_mat, config.n_steps, 0)

 print (len(hidden), str(hidden[0].get_shape()))

 # New shape: a list of lenght "time_step" containing tensors of shape

[batch_size, n_hidden]

 # Stacking LSTM cells, at least one is stacked:

 print ("\nCreating hidden #1:")

 hidden = residual_bidirectional_LSTM_layers(hidden, config.n_inputs,

config.n_hidden, 1, config, keep_prob_for_dropout)

 print (len(hidden), str(hidden[0].get_shape()))

 for stacked_hidden_index in range(config.n_stacked_layers - 1):

 # If the config permits it, we stack more lstm cells:

 print ("\nCreating hidden #{}:".format(stacked_hidden_index+2))

 hidden = residual_bidirectional_LSTM_layers(hidden, config.n_hidden,

config.n_hidden, stacked_hidden_index+2, config, keep_prob_for_dropout)

 print (len(hidden), str(hidden[0].get_shape()))

 print ("")

 # Final fully-connected activation logits

 # Get the last output tensor of the inner loop output series, of shape

[batch_size, n_classes]

 last_hidden = tf.nn.dropout(hidden[-1], keep_prob_for_dropout)

 last_logits = relu_fc(

194

 [last_hidden],

 config.n_hidden, config.n_classes, config

)[0]

 return last_logits

 def run_with_config(Config, X_train, y_train, X_test, y_test):

 start_time = datetime.now()

 print ("Start Time: ",time.ctime())

 print ("")

 tf.reset_default_graph() # To enable to run multiple things in a loop

 #-----------------------------------

 # Define parameters for model

 #-----------------------------------

 config = Config(X_train, X_test)

 print("Some useful info to get an insight on dataset's shape and normalisation:")

 print("features shape, labels shape, each features mean, each features standard

deviation")

 print(X_test.shape, y_test.shape,

 np.mean(X_test), np.std(X_test))

 print("the dataset is therefore properly normalised, as expected.")

 #--

 # Let's get serious and build the neural network

 #--

 #with tf.device("/cpu:0"): # Remove this line to use GPU. If you have a too

small GPU, it crashes.

 with tf.device(tf.train.replica_device_setter(cluster=cluster)):

 #with tf.device('/gpu:0'):

195

 #with tf.device('/gpu:1'):

 #mirrored_strategy = tf.contrib.distribute.MirroredStrategy(devices=["/gpu:0",

"/gpu:1"])

 #with mirrored_strategy.scope():

 X = tf.placeholder(tf.float32, [

 None, config.n_steps, config.n_inputs], name="X")

 Y = tf.placeholder(tf.float32, [

 None, config.n_classes], name="Y")

 # is_train for dropout control:

 is_train = tf.placeholder(tf.bool, name="is_train")

 keep_prob_for_dropout = tf.cond(is_train,

 lambda: tf.constant(

 config.keep_prob_for_dropout,

 name="keep_prob_for_dropout"

),

 lambda: tf.constant(

 1.0,

 name="keep_prob_for_dropout"

)

)

 pred_y = LSTM_network(X, config, keep_prob_for_dropout)

 # Loss, optimizer, evaluation

 # Softmax loss with L2 and L1 layer-wise regularisation

 print ("Unregularised variables:")

 for unreg in [tf_var.name for tf_var in tf.trainable_variables() if ("noreg"

in tf_var.name or "Bias" in tf_var.name)]:

 print (unreg)

196

 l2 = config.lambda_loss_amount * sum(

 tf.nn.l2_loss(tf_var)

 for tf_var in tf.trainable_variables()

 if not ("noreg" in tf_var.name or "Bias" in tf_var.name)

)

 # first_weights = [w for w in tf.all_variables() if w.name ==

'LSTM_network/layer_1/pass_forward/relu_fc_weights:0'][0]

 # l1 = config.lambda_loss_amount * tf.reduce_mean(tf.abs(first_weights))

 loss = tf.reduce_mean(

 tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred_y,labels=Y))

+ l2 # + l1

 # Gradient clipping Adam optimizer with gradient noise

 optimize = tf.contrib.layers.optimize_loss(

 loss,

 global_step=tf.Variable(0),

 learning_rate=config.learning_rate,

 optimizer=tf.train.AdamOptimizer(learning_rate=config.learning_rate),

 clip_gradients=config.clip_gradients,

 gradient_noise_scale=config.gradient_noise_scale

)

 correct_pred = tf.equal(tf.argmax(pred_y, 1), tf.argmax(Y, 1))

 accuracy = tf.reduce_mean(tf.cast(correct_pred, dtype=tf.float32))

 #--

 # Hooray, now train the neural network

 #--

 # Note that log_device_placement can be turned off for less console spam.

197

 #sessconfig = tf.ConfigProto(log_device_placement=False)

 sessconfig = tf.ConfigProto(allow_soft_placement =

True,log_device_placement=False)

 #sessconfig.gpu_options.allow_growth = True

 #with tf.Session(config=sessconfig) as sess:

 with tf.Session("grpc://localhost:1024") as sess:

 #init = tf.global_variables_initializer()

 sess.run(tf.global_variables_initializer())

 best_accuracy = (0.0, "iter: -1")

 best_f1_score = (0.0, "iter: -1")

 # Start training for each batch and loop epochs

 worst_batches = []

 for i in range(config.training_epochs):

 # Loop batches for an epoch:

 shuffled_X, shuffled_y = shuffle(X_train, y_train, random_state=i*42)

 for start, end in zip(range(0, config.train_count, config.batch_size),

 range(config.batch_size, config.train_count + 1,

config.batch_size)):

 _, train_acc, train_loss, train_pred = sess.run(

 [optimize, accuracy, loss, pred_y],

 feed_dict={

 X: shuffled_X[start:end],

 Y: shuffled_y[start:end],

 is_train: True

 }

)

 worst_batches.append(

198

 (train_loss, shuffled_X[start:end], shuffled_y[start:end])

)

 worst_batches = list(sorted(worst_batches))[-5:] # Keep 5 poorest

 # Train F1 score is not on boosting

 train_f1_score = metrics.f1_score(

 shuffled_y[start:end].argmax(1), train_pred.argmax(1),

average="weighted"

)

 # Retrain on top worst batches of this epoch (boosting):

 # a.k.a. "focus on the hardest exercises while training":

 for _, x_, y_ in worst_batches:

 _, train_acc, train_loss, train_pred = sess.run(

 [optimize, accuracy, loss, pred_y],

 feed_dict={

 X: x_,

 Y: y_,

 is_train: True

 }

)

 # Test completely at the end of every epoch:

 # Calculate accuracy and F1 score

 pred_out, accuracy_out, loss_out = sess.run(

 [pred_y, accuracy, loss],

 feed_dict={

 X: X_test,

 Y: y_test,

199

 is_train: False

 }

)

 # "y_test.argmax(1)": could be optimised by being computed once...

 f1_score_out = metrics.f1_score(

 y_test.argmax(1), pred_out.argmax(1), average="weighted"

)

 print (

 "iter: {}, ".format(i) + \

 "train loss: {}, ".format(train_loss) + \

 "train accuracy: {}, ".format(train_acc) + \

 "train F1-score: {}, ".format(train_f1_score) + \

 "test loss: {}, ".format(loss_out) + \

 "test accuracy: {}, ".format(accuracy_out) + \

 "test F1-score: {}".format(f1_score_out)

)

 best_accuracy = max(best_accuracy, (accuracy_out, "iter:

{}".format(i)))

 best_f1_score = max(best_f1_score, (f1_score_out, "iter: {}".format(i)))

 print("")

 print("final test accuracy: {}".format(accuracy_out))

 print("best epoch's test accuracy: {}".format(best_accuracy))

 print("final F1 score: {}".format(f1_score_out))

 print("best epoch's F1 score: {}".format(best_f1_score))

 print("")

 end_time = datetime.now()

 print("End Time: ",time.ctime())

 print("Exec Duration: {}".format(end_time - start_time))

200

 print("")

 # returning both final and bests accuracies and f1 scores.

 return accuracy_out, best_accuracy, f1_score_out, best_f1_score

Config_Dataset_HAR.py

#!/usr/bin/env python

coding: utf-8

In[]:

__author__ = 'jkranbir'

Note: Linux bash commands start with a "!" inside those "ipython notebook" cells

import os

DATA_PATH = "data/"

get_ipython().system('pwd && ls')

os.chdir(DATA_PATH)

get_ipython().system('pwd && ls')

get_ipython().system('python download_datasets.py')

get_ipython().system('pwd && ls')

os.chdir("..")

get_ipython().system('pwd && ls')

DATASET_PATH = DATA_PATH + "UCI HAR Dataset/"

print("\n" + "Dataset is now located at: " + DATASET_PATH)

201

In[]:

__author__ = 'jkranbir'

from lstm_architecture import one_hot, run_with_config

import numpy as np

import os

#os.environ["CUDA_VISIBLE_DEVICES"]="0,1"

#--

Neural net's config.

#--

class Config(object):

 """

 define a class to store parameters,

 the input should be feature mat of training and testing

 """

 def __init__(self, X_train, X_test):

 workers =

["192.168.1.16:1024","192.168.1.17:1024","192.168.1.18:1024","192.168.1.19:1024",

"192.168.1.20:1024","192.168.1.21:1024","192.168.1.22:1024","192.168.1.23:1024",

"192.168.1.24:1024","192.168.1.25:1024","192.168.1.26:1024","192.168.1.27:1024",

202

"192.168.1.28:1024","192.168.1.29:1024","192.168.1.30:1024","192.168.1.31:1024"]

 taskCount = len(workers)

 cluster = tf.train.ClusterSpec({"worker":workers})

 # Data shaping

 self.train_count = len(X_train)/taskCount # 7352/16 training series

 self.test_data_count = len(X_test)/taskCount # 2947/16 testing series

 self.n_steps = len(X_train[0]) # 128 time_steps per series

 self.n_classes = 6 # Final output classes

 # Training

 self.learning_rate = 0.001

 self.lambda_loss_amount = 0.005

 self.training_epochs = 250 #5

 self.batch_size = 100

 self.clip_gradients = 15.0

 self.gradient_noise_scale = None

 # Dropout is added on inputs and after each stacked layers (but not

 # between residual layers).

 self.keep_prob_for_dropout = 0.85 # **(1/3.0)

 # Linear+relu structure

 self.bias_mean = 0.3

 # I would recommend between 0.1 and 1.0 or to change and use a xavier

 # initializer

 self.weights_stddev = 0.2

 ########

203

 # NOTE: I think that if any of the below parameters are changed,

 # the best is to readjust every parameters in the "Training" section

 # above to properly compare the architectures only once optimised.

 ########

 # LSTM structure

 # Features count is of 9: three 3D sensors features over time

 self.n_inputs = len(X_train[0][0])

 self.n_hidden = 256 # nb of neurons inside the neural network

 # Use bidir in every LSTM cell, or not:

 self.use_bidirectionnal_cells = True #False

 # High-level deep architecture

 self.also_add_dropout_between_stacked_cells = False #True

 # NOTE: values of exactly 1 (int) for those 2 high-level parameters below totally

disables them and result in only 1 starting LSTM.

 # self.n_layers_in_highway = 1 # Number of residual connections to the LSTMs

(highway-style), this is did for each stacked block (inside them).

 # self.n_stacked_layers = 1 # Stack multiple blocks of residual

 # layers.

#--

Dataset-specific constants and functions + loading

#--

Useful Constants

204

Those are separate normalised input features for the neural network

INPUT_SIGNAL_TYPES = [

 "body_acc_x_",

 "body_acc_y_",

 "body_acc_z_",

 "body_gyro_x_",

 "body_gyro_y_",

 "body_gyro_z_",

 "total_acc_x_",

 "total_acc_y_",

 "total_acc_z_"

]

Output classes to learn how to classify

LABELS = [

 "WALKING",

 "WALKING_UPSTAIRS",

 "WALKING_DOWNSTAIRS",

 "SITTING",

 "STANDING",

 "LAYING"

]

DATA_PATH = "data/"

DATASET_PATH = DATA_PATH + "UCI HAR Dataset/"

TRAIN = "train/"

TEST = "test/"

205

Load "X" (the neural network's training and testing inputs)

def load_X(X_signals_paths):

 """

 Given attribute (train or test) of feature, read all 9 features into an

 np ndarray of shape [sample_sequence_idx, time_step, feature_num]

 argument: X_signals_paths str attribute of feature: 'train' or 'test'

 return: np ndarray, tensor of features

 """

 X_signals = []

 for signal_type_path in X_signals_paths:

 file = open(signal_type_path, 'r')

 # Read dataset from disk, dealing with text files' syntax

 X_signals.append(

 [np.array(serie, dtype=np.float32) for serie in [

 row.replace(' ', ' ').strip().split(' ') for row in file

]]

)

 file.close()

 return np.transpose(np.array(X_signals), (1, 2, 0))

X_train_signals_paths = [

 DATASET_PATH + TRAIN + "Inertial Signals/" + signal + "train.txt" for signal in

INPUT_SIGNAL_TYPES

]

X_test_signals_paths = [

 DATASET_PATH + TEST + "Inertial Signals/" + signal + "test.txt" for signal in

INPUT_SIGNAL_TYPES

]

206

X_train = load_X(X_train_signals_paths)

X_test = load_X(X_test_signals_paths)

Load "y" (the neural network's training and testing outputs)

def load_y(y_path):

 """

 Read Y file of values to be predicted

 argument: y_path str attibute of Y: 'train' or 'test'

 return: Y ndarray / tensor of the 6 one_hot labels of each sample

 """

 file = open(y_path, 'r')

 # Read dataset from disk, dealing with text file's syntax

 y_ = np.array(

 [elem for elem in [

 row.replace(' ', ' ').strip().split(' ') for row in file

]],

 dtype=np.int32

)

 file.close()

 # Substract 1 to each output class for friendly 0-based indexing

 return one_hot(y_ - 1)

y_train_path = DATASET_PATH + TRAIN + "y_train.txt"

y_test_path = DATASET_PATH + TEST + "y_test.txt"

y_train = load_y(y_train_path)

y_test = load_y(y_test_path)

#--

207

Training (maybe multiple) experiment(s)

#--

n_layers_in_highway = 4

n_stacked_layers = 4

trial_name = "{}x{}".format(n_layers_in_highway, n_stacked_layers)

for i in range(0, taskCount):

 for learning_rate in [0.001]: # [0.01, 0.001, 0.0001]:

 for lambda_loss_amount in [0.005]:

 for clip_gradients in [15.0]:

 print ("learning_rate: {}".format(learning_rate))

 print ("lambda_loss_amount: {}".format(lambda_loss_amount))

 print ("")

 class EditedConfig(Config):

 def __init__(self, X, Y):

 super(EditedConfig, self).__init__(X, Y)

 # Edit only some parameters:

 self.learning_rate = learning_rate

 self.lambda_loss_amount = lambda_loss_amount

 self.clip_gradients = clip_gradients

 # Architecture params:

 self.n_layers_in_highway = n_layers_in_highway

 self.n_stacked_layers = n_stacked_layers

 # # Useful catch upon looping (e.g.: not enough memory)

 # try:

 # accuracy_out, best_accuracy = run_with_config(EditedConfig)

208

 # except:

 # accuracy_out, best_accuracy = -1, -1

 accuracy_out, best_accuracy, f1_score_out, best_f1_score = (

 run_with_config(EditedConfig, X_train, y_train, X_test, y_test)

)

 print (accuracy_out, best_accuracy, f1_score_out, best_f1_score)

 with open('{}_result_HAR_6.txt'.format(trial_name), 'a') as f:

 f.write(str(learning_rate) + ' \t' + str(lambda_loss_amount) + ' \t' +

str(clip_gradients) + ' \t' + str(

 accuracy_out) + ' \t' + str(best_accuracy) + ' \t' + str(f1_score_out) + '

\t' + str(best_f1_score) + '\n\n')

 print ("__")

 print ("")

 print ("Done.")

In[]:

data/download_datasets.py : Same as TensorFlow Data

209

APPENDIX C – TENSORFLOW SETUP

C.1 TensorFlow Installation

In the previous APPENDIX-A, we have already installed NVIDIA GPUs in the big

machine. Then we have successfully installed NVIDIA driver for the GPUs along with

CUDA and cuDNN in the machine. We are starting this section, with the prerequisite of

all previous installations.

Step-1: Check if your machine having conda installed previously by the command.

hpcmonster369@hpc369-Z10PE-D16-WS:~$ conda --version

If not installed, Please download the Anaconda from the website.

https://www.anaconda.com/download/#linux

Step-2: Go to the download folder and verify the md5sum value of the downloaded

Anaconda copy with the link given below.

md5sum Anaconda3-5.3.0-Linux-x86_64.sh

4321e9389b648b5a02824d4473cfdb5f Anaconda3-5.3.0-Linux-x86_64.sh

Verify with below link as having same md5sum #

http://docs.anaconda.com/anaconda/install/hashes/Anaconda3-5.3.0-Linux-x86_64.sh-

hash/

If both having same md5sum values, then you have downloaded the software correctly.

Step-3: Install Anaconda3.

bash Anaconda3-5.3.0-Linux-x86_64.sh

210

Step-4: Go to the installation page, accept the Anaconda3 license after installation.

Step-5: It is recommended to select yes to prepend Anaconda3 install location to the path

in your bashrc file. You can create a backup of your bashrc file before clicking on yes for

safety purpose.

Step-6: Activate the installation by using below command.

source ~/.bashrc

Step-7: Verify Installation → conda list

C.2 TensorFlow Environment Setup

Step-1: Create the environment

hpcmonster369@hpc369-Z10PE-D16-WS:~$ conda create --name

rnn_lstm_har_tensorflow tensorflow-gpu

Step-2: Activate the environment

hpcmonster369@hpc369-Z10PE-D16-WS:~$ conda activate rnn_lstm_har_tensorflow

Step-3: Add Dependencies

conda install numpy

conda install keras

conda install pandas

conda install matplotlib

conda install scipy scikit-learn

conda install nb_conda

Step-4: Check Available Jupyter Kernel

211

hpcmonster369@hpc369-Z10PE-D16-WS:~$ jupyter kernelspec list

Step-5: Validate the environment

conda info –envs

Once all steps completed successfully, the environment would display as Figure. 73

Figure. 73 TensorFlow Project Screen

212

APPENDIX D – PYTORCH SETUP

D.1 PyTorch Installation

In the previous APPENDIX-A, we have already installed NVIDIA GPUs in the big

machine. Then we have successfully installed NVIDIA driver for the GPUs along with

CUDA and cuDNN in the machine. In the APPENDIX-C, we have already installed

Anaconda3 in the machine. We are starting this section, with the prerequisite of all

previous installations.

D.2 PyTorch Environment Setup

Step-1: Create the environment

hpcmonster369@hpc369-Z10PE-D16-WS:~$ conda create -n rnn_lstm_har_pytorch

python=3.6

Step-2: Activate the environment

hpcmonster369@hpc369-Z10PE-D16-WS:~$ conda activate rnn_lstm_har_pytorch

Step-3: Add Dependencies

conda install pytorch=0.4.1 cuda90 -c pytorch

conda install torchvision -c pytorch

conda install matplotlib

conda install -c conda-forge tqdm

conda install nb_conda

Step-4: Validate the environment

conda info --envs

Once all steps completed successfully, the environment would display as Figure. 74

213

Figure. 74 PyTorch Project Screen

214

APPENDIX E – RASPBERRY PI CLUSTER SETUP

E.1 Raspberry Pi Parts

1. Raspberry Pi 3 Model B+ motherboard

2. Samsung 32 GB Class 10 MicroSD card

3. 2.5A Power Adapter

4. 2 Heat sinks

5. MicroSD USB Reader (Optional)

6. Premium Case (Optional)

7. Premium HDMI Cable (Optional)

E.2 Individual Raspberry Pi Installation

Step-1: 1. Install “Raspbian Stretch with desktop” Kernel Version 4.14 from the official

Raspberry PI website link given below.

https://www.raspberrypi.org/downloads/raspbian/

Step-2: Download and Install the Etcher (Linux x86 version) which will burn the

Raspbian image to the Micro SD card. The link given below.

https://www.balena.io/etcher/

Step-3: Get a microSD card adapter and fire up the Etcher so that all the microSD cards

having Kernel version 4.14.

Step-4: To enable SSH remote access from the Pi, open the “boot” drive on the microSD

card and create an empty file named ssh with no extension. Open the folder in a shell and

run below command.

$ touch ssh

215

Step-5: To build a package that supports all Raspberry Pi devices—including the Pi 1 and

Zero use the below command in your Linux machine which will build a .whl package for

installation in Raspberry pi.

$ tensorflow/tools/ci_build/ci_build.sh PI \

 tensorflow/tools/ci_build/pi/build_raspberry_pi.sh PI_ONE

For updated version, please use the below link

https://www.tensorflow.org/install/source_rpi

Step-6: Copy the wheel file to the Raspberry Pi and install with pip with appropriate

version number.

$ pip install tensorflow-version-cp34-none-linux_armv7l.whl

Step-7: Connect all the Raspberry Pi to a switch which is connected to a network.

Step-8: Login to Pi using the default password raspberry.

Step-9: Go to the raspi-config to do the rest of the setup.

pi@raspberrypi~$ sudo raspi-config

1. Change the password of default to your own convenient one.

2. Set the locale and timezone.

3. Rename each pi from the default name to rpi# as per the nodes going to be used in the

cluster. You can do that from the configuration file itself and restart the pi.

3. Set the hostname in each pi.

sudo hostname node01 # whatever name you chose

sudo nano /etc/hostname # change the hostname here too

sudo nano /etc/hosts # change "raspberrypi" to "node01"

216

4. In raspi-config, check whether the ssh mode is enabled or not. If not enable it.

5. Change the assigned memory for GPU to minimum.

6. Change the assigned memory for CPU to maximum.

7. In raspi-config, change (3. Boot Options > B2 Wait for Network at Boot) from “No” to

“Yes”. This will ensure that networking is available before the fstab file mounts the NFS

client.

8. Restart the Pi by below command.

sudo reboot

9. Repeat the process for all Pis.

10. For password less entry into each Pi, you can generate SSH keys for all nodes are

distributing the public keys of each node to the rest of the nodes. Please the link to

generate SSH keys. After that update /etc/hosts of each node with ip address of rest node.

https://www.raspberrypi.org/documentation/remote-access/ssh/passwordless.md

Step-10: To work on a cluster we need to set up the NFS server and client on master node

and NFS client set up on all the worker nodes which is already mentioned in 5.2 Cluster

of Raspberry Pis Setup section.

E.3 Installation of Program

Step-1: Run the server.py program on the each Raspberry Pi node.

Step-2: The master node should contain both the files lstm_architecture.py and

Config_Dataset_HAR.py with proper dataset folder inside the NFS server directory.

Step-3: The folder structure of the dataset is already mentioned in APPENDIX-A.

Step-4: Run the Config_Dataset_HAR.py on the master node to start the deep model

iterating.

217

REFERENCES

[1] Yann LeCun, Yoshua Bengio, Geoffrey Hinton (2015), “Deep learning” , Nature,

May 28, Volume 521(7553), p.436–444, doi:10.1038/nature14539.

[2] “The Next Generation of Machine Learning Chips”, Deloitte Global, December,

2017

[3] Wojciech Zaremba, Ilya Sutskever, Oriol Vinyals (2015), “Recurrent Neural

Network Regularization” , Conference paper at ICLR, arXiv:1409.2329

[4] Sepp Hochreiter, Jürgen Schmidhuber (1997), “Long short-term memory”,

Neural Computation Volume 9, Issue 8, November 15, p.1735-1780,

doi:10.1162/neco.1997.9.8.1735.

[5] Samuel, Arthur L. (1959). "Some Studies in Machine Learning Using the Game

of Checkers". IBM Journal of Research and Development. 44: 206–226. CiteSeerX

10.1.1.368.2254. doi:10.1147/rd.441.0206.

[6] https://en.wikipedia.org/wiki/GeForce_256#cite_note-2

[7] https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

[8] Li, Mu and Andersen, David G. and Park, Jun Woo and Smola, Alexander J. and

Ahmed, Amr and Josifovski, Vanja and Long, James and Shekita, Eugene J. and Su, Bor-

Yiing (2014), “Scaling Distributed Machine Learning with the Parameter Server”,

Proceedings of the 11th USENIX Conference on Operating Systems Design and

Implementation, Broomfield, CO, p.583-598,

http://dl.acm.org/citation.cfm?id=2685048.2685095

218

[9] Uthayasankar Sivarajah, Muhammad Mustafa Kamal, Zahir Irani, Vishanth

Weerakkody (2017), “Critical analysis of Big Data challenges and analytical methods”,

Journal of Business Research, Volume 70, January, Pages 263-286.

[10] Dobre, Ciprian, Xhafa, Fatos (2014), “Intelligent services for Big Data science”,

Future Generation Computer Systems, vol. 37, p.267-281,

doi:10.1016/j.future.2013.07.014

[11] Mayer-Schönberger, V., & Cukier, K. (2013) “Big data: A revolution that will

transform how we live, work, and think. Boston”, MA, Houghton Mifflin Harcourt,

PsycINFO Database Record

[12] Alex Krizhevsky and Sutskever, Ilya and Hinton, Geoffrey E (2012), “ImageNet

Classification with Deep Convolutional Neural Networks”, Advances in Neural

Information Processing Systems 25 NIPS 2012, p. 1097-1105,

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-

networks.pdf

[13] Jeffrey Dean,Matthieu Devin,Sanjay Ghemawat,Ian J. Goodfellow

(2016),"TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed

Systems", CoRR, vol. abs/1603.04467

[14] Ketkar, Nikhil (2017). "Introduction to PyTorch". Deep Learning with Python.

Apress, Berkeley, CA. pp. 195–208, doi: 10.1007/978-1-4842-2766-4_12. ISBN

9781484227657.

[15] Tianqi Chen, Mu Li, Yutian Li (2015),"MXNet: A Flexible and Efficient Machine

Learning Library for Heterogeneous Distributed Systems", CoRR, vol.abs/1512.01274,

http://arxiv.org/abs/1512.01274

[16] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,

Joseph M. Hellerstein (2012), “Distributed GraphLab: A Framework for Machine

219

Learning and Data Mining in the Cloud”, Proc. VLDB Endow, Vol 5, No. 8, doi

=10.14778/2212351.2212354

[17] Joseph Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, Carlos Guestrin

(2012). "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs."

Proceedings of Operating Systems Design and Implementation (OSDI).

[18] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin and J. Hellerstein.

“GraphLab: A New Framework for Parallel Machine Learning”, In the 26th Conference

on Uncertainty in Artificial Intelligence (UAI), Catalina Island, USA, 2010

[19] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le,M. Mao, M. Ranzato, A.

Senior, P. Tucker, K. Yang, and A. Ng. “Large scale distributed deep networks.” In

Neural Information Processing Systems, 2012.

[20] Dean LG, Kendal RL, Schapiro SJ, Thierry B, Laland KN (2012), “Identification

of the social and cognitive processes underlying human cumulative culture.”, Science.

2012; 335(6072):1114–1118. doi:10.1126/science.1213969

[21] Yujun Lin, Song Han, Huizi Mao, Yu Wang, William J. Dally (2018), “Deep

gradient compression: Reducing the communication bandwidth for distributed training”,

ICLR 2018

[22] Bengio Y, Simard P, Frasconi P.(1994),"Learning long-term dependencies with

gradient descent is difficult",IEEE Trans Neural Netw. 1994; 5(2):157-66., PMID:

18267787 DOI: 10.1109/72.279181

[23] Karanbir Singh Chahal, Manraj Singh Grover, Kuntal Dey (2018),"A Hitchhiker's

Guide On Distributed Training of Deep Neural Networks",CoRR, vol.abs/1810.11787,

http://arxiv.org/abs/1810.11787

[24] Ioannis Mitliagkas, Ce Zhang, Stefan Hadjis, Christopher Ré, "Asynchrony begets

Momentum, with an Application to Deep Learning", NIPS 2016, arXiv: 1605.09774

220

[25] J. Yang, J. Lee, and J. Choi (2011), “Activity Recognition Based on RFID Object

Usage for Smart Mobile Devices,” J. Comput. Sci. Technol., vol. 26, no. 2, pp. 239–246,

Mar. 2011.

[26] Tim Salimans, Diederik P. Kingma (2016), “Weight Normalization: A Simple

Reparameterization to Accelerate Training of Deep Neural Networks”, NIPS 2016

[27] S. Lasecki, Walter & Chol Song, Young & Kautz, Henry & P. Bigham, Jeffrey.

(2013), “Real-time crowd labeling for deployable activity recognition”, Proceedings of

the ACM Conference on Computer Supported Cooperative Work, CSCW. 1203-1212.

10.1145/2441776.2441912.

[28] Sumit Majumder, Emad Aghayi, Moein Noferesti, Hamidreza Memarzadeh-

Tehran, Tapas Mondal, Zhibo Pang, M. Jamal Deen (2017), “Smart Homes for Elderly

Healthcare—Recent Advances and Research Challenges” , Sensors (Basel). 2017 Nov;

17(11): 2496, doi: 10.3390/s17112496.

[29] L. Chen, C. D. Nugent, and H. Wang (2012), “A KnowledgeDriven Approach to

Activity Recognition in Smart Homes,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 6,

pp. 961–974, Jun. 2012.

 [30] Y.-J. Chang, S.-F. Chen, and J.-D. Huang (2011), “A Kinect-based system for

physical rehabilitation: a pilot study for young adults with motor disabilities,” Res. Dev.

Disabil., vol. 32, no. 6, pp. 2566–2570, 2011.

[31] N. Alshurafa, W. Xu, J. Liu, M.-C. Huang, B. Mortazavi (2013), C. Roberts, and

M. Sarrafzadeh, “Designing a Robust Activity Recognition Framework for Health and

Exergaming using Wearable Sensors.,” IEEE J. Biomed. Heal. Informatics, no. c, pp. 1–

11, Oct. 2013.

[32] Fish, Ram David Adva; Messenger, Henry; Baryudin, Leonid; Dardashti, Soroush

Salehian; Goldshtein, Evgenia , "Fall detection system using a combination of

221

accelerometer, audio input and magnetometer", Patent No. 9648478 , Filing Date: 21

August 2014

[33] B. Lange, C.-Y. Chang, E. Suma, B. Newman, A. S. Rizzo (2011), and M. Bolas,

“Development and evaluation of low cost game-based balance rehabilitation tool using

the Microsoft Kinect sensor.,” Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 2011, pp.

1831–4, Jan. 2011.

[34] K. Yoshimitsu, Y. Muragaki, T. Maruyama, M. Yamato, and H. Iseki (2014),

“Development and Initial Clinical Testing of ‘OPECT’: An Innovative Device for Fully

Intangible Control of the Intraoperative Image-Displaying Monitor by the Surgeon,”

Neurosurgery, vol. 10.

[35] B. Mirmahboub, S. Samavi, N. Karimi, and S. Shirani (2012), “Automatic

Monocular System for Human Fall Detection based on Variations in Silhouette Area.,”

IEEE Trans. Biomed. Eng., no. c, pp. 1–10, Nov. 2012.

[36] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-

Ortiz (2013), “A Public Domain Dataset for Human Activity Recognition Using

Smartphones” , ESANN 2013 proceedings, European Symposium on Artificial Neural

Networks, Computational Intelligence and Machine Learning. Bruges (Belgium), 24-26

April 2013.

[37] UCI Human Activity Recognition Using Smartphones Data Set,

“https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphon

es”

[38] W. Ong, L. Palafox, and T. Koseki (2013), “Investigation of Feature Extraction

for Unsupervised Learning in Human Activity Detection,” Bull. Networking, Computer.

System Software, vol. 2, no. 1, pp. 30–35, 2013.

222

[39] Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton (2016), “Layer

Normalization”, NIPS 2016

[40] Sergey Ioffe, Christian Szegedy (2015), “Batch normalization: Accelerating deep

network training by reducing internal covariate shift.” In International Conference on

Machine Learning, pages 448–456, 2015.

[41] David E. Rumelhart, Geoffrey E. Hinton & Ronald J. Williams (1986), “Learning

representations by back-propagating errors”, Nature, volume 323, pages533–536 (1986),

https://doi.org/10.1038/323533a0

[42] Hava T. Siegelmann (1996), “Recurrent neural networks and finite automata”,

Computational Intelligence, Volume 12, Number 4, 1996

[43] Minsky, Marvin L. (1967), “Computation: Finite and Infinite Machines”,

Prentice-Hall, Inc., ISBN = 0-13-165563-9

[44] SiegelmannH.T.SontagE.D.(1995), “On the Computational Power of Neural

Nets” , Journal of Computer and System Sciences ,Volume 50, Issue 1, February 1995,

p.132-150

[45] Hava T Siegelmann, Eduardo D Sontag (1994), “Analog computation via neural

networks*”, Theoretical Computer Science, Volume 131, Issue 2, 12 September 1994,

p.331-360, https://doi.org/10.1016/0304-3975(94)90178-3

[46] Hava T. Siegelmann and Eduardo D. Sontag (1991), “Turing Computability with

Neural Nets”, Applied Mathematics Letters, Vol. 4, p.77-80

[47] Mozer, M. C. (1995). "A Focused Backpropagation Algorithm for Temporal

Pattern Recognition". In Chauvin, Y.; Rumelhart, D. “Backpropagation: Theory,

architectures, and applications.” ResearchGate. Hillsdale, NJ: Lawrence Erlbaum

Associates. pp. 137–169. Retrieved 2017-08-21.

223

[48] Bengio, Y & Frasconi, Paolo & Simard, Patrice (1993), “Problem of learning

long-term dependencies in recurrent networks”, 1993 IEEE International Conference on

Neural Networks. 1183 - 1188 vol.3, doi:10.1109/ICNN.1993.298725.

[49] Cho, Kyunghyun; van Merrienboer, Bart; Gulcehre, Caglar; Bahdanau, Dzmitry;

Bougares, Fethi; Schwenk, Holger; Bengio, Yoshua (2014). "Learning Phrase

Representations using RNN Encoder-Decoder for Statistical Machine Translation". arxiv:

1406.1078 [cs.CL].

[50] S. Vosoughi, P. Vijayaraghavan, and D. Roy (2016), “Tweet2vec: Learning tweet

embeddings using character-level CNN-LSTM encoder-decoder,” CoRR , vol.

abs/1607.07514.

[51] Michaela Blott, Ling Liu, Kimon Karras, Kees A Vissers (2015),

“Scaling Out to a Single-Node 80Gbps Memcached Server with 40Terabytes of

Memory”, In HotStorage ’15.

[52] Priya Goyal, Piotr Doll, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski,

Aapo Kyrola, Andrew Tulloch, Yangqing Jia, Kaiming He (2017), “Accurate, Large

Minibatch SGD: Training ImageNet in 1 Hour”, CoRR, vol abs/1706.02677,

http://arxiv.org/abs/1706.02677

[52] Peter H. Jin, Qiaochu Yuan, Forrest N. Iandola, Kurt Keutzer (2016), “How to

scale distributed deep learning?”,CoRR, vol.abs/1611.04581

[53] Yujun Lin, Song Han, Huizi Mao, Yu Wang, William J. Dally, "Deep Gradient

Compression: Reducing the Communication Bandwidth for Distributed Training",CoRR

,vol.abs/1712.01887, 2017

[54] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” arXiv preprint arxiv: 1512.03385, 2015.

224

[55] Jaeyoung Kim, Mostafa El-Khamy, Jungwon Lee (2017), “Residual LSTM:

Design of a Deep Recurrent Architecture for Distant Speech Recognition”,

INTERSPEECH 2017 August 20–24, 2017, Stockholm, Sweden,

[56] A. Emin Orhan and Zachary Pitkow (2017), “Skip Connections Eliminate

Singularities”, Orhan2017SkipCE

[57] Y.-y. Chen, Y. Lv, Z. Li, and F.-Y. Wang (2016), “Long short-term memory model

for traffic congestion prediction with online open data,” in Intelligent Transportation

Systems (ITSC), 2016 IEEE 19th International Conference on. IEEE, 2016, pp. 132–137.

[58] Zhiyong Cui, Student Member, Ruimin Ke, Student Member, Yinhai Wang (2018),

“Deep Stacked Bidirectional and Unidirectional LSTM Recurrent Neural Network for

Network-wide Traffic Speed Prediction” , CoRR, vol.abs/1801.02143,2018

[59] Yu Zhao and Rennong Yang and Guillaume Chevalier and Maoguo Gong (2017),

“Deep Residual Bidir-LSTM for Human Activity Recognition Using Wearable Sensors”,

CoRR , doi:abs/1708.08989

[60] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi

(2016), "Google’s Neural Machine Translation System: Bridging the Gap between

Human and Machine Translation.

	Thesis_Draft_6.3.1
	Thesis_Draft_6.3.1
	Scanned-image_05-10-2019-105726
	Thesis_Draft_6.3.1

	Thesis_Draft_6.3.2
	Thesis_Draft_6.3.3

