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Abstract 
 
 
This thesis work focuses on distributed deep learning approaches implementing Human 
Activity Recognition (HAR) using Recurrent Neural Network (RNN) Long Short-Term 
Memory (LSTM) model using University of California at Irvine’s machine learning 
database. This work includes developing the LSTM residual bidirectional architecture 
using Python 3 programming language over distributed TensorFlow and PyTorch 
programming frameworks on top of two testbed systems: the first one is Raspberry Pi 
cluster that is built upon 16 Raspberry Pis, clustered together by using parameter server 
architecture. Another one is the NVIDIA GPU cluster which is equipped with 3 GPUs 
named Tesla K40C, Quadro P5000 and Quadro K620. Here we compare and observe the 
performance of our deep learning algorithms in terms of execution time and prediction 
accuracy with varying number of deep layers with hidden neurons in the neural networks. 
Our first comparison is based on using TensorFlow and PyTorch over NVIDIA Maximus 
distributed multicore architecture. The second comparison is the execution of the 
Raspberry Pi cluster and Octa core Intel Xeon CPU. In this research we present that the 
implementations of distributed neural network over the GPU cluster perform better than 
the Raspberry Pi cluster and the multicore system.  
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CHAPTER I 

INTRODUCTION 

 

1.1 Machine Learning With Big Data 

More than 2.5 quintillion bytes of data are created each day. The prevalence of data will 

only increase, so we need to learn how to deal with such large data. Storing this data is 

one thing, but what about processing it and developing machine learning algorithms to 

work with it? Solving complex computational problems in a short amount of time, as well 

as dealing with large-sized data sets and massive amounts of continuously growing data, 

are some challenges that are being addressed by parallel processing algorithms. Data 

centers deployed with high-end GPUs enable computational storage and network 

processing power to support such highly demanding workloads. Access to thousands of 

cores of each GPU with high-capacity network and high-IOPS (Input/Output Operations 

Per Second) storage allows for ideal infrastructure, which are built for HPC and Big Data 

applications. But this is not enough in future. This line of research should focus on 

developing new Machine Learning (ML) models on adapting (scaling up) existing 

models in order to handle larger scale datasets.  
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1.2 Deep Learning 

Deep Learning [1] is a sub-field of machine learning concerned with algorithms inspired 

by the structure and function of the brain called artificial neural networks. It uses non-

linear processing units with multiple layers for feature transformation and extraction. It 

also reflects concepts in multiple hierarchical fashions which corresponds to various 

levels of abstraction. As per Jeff Dean scientist of Google AI Brain, “When you hear the 

term deep learning, just think of a large deep neural net. Deep refers to the number of 

layers typically and so this kind of the popular term that’s been adopted in the press. I 

think of them as deep neural networks generally.” Modern neural network architectures 

trained on large datasets can obtain impressive performance across a wide variety of 

domains, from speech and image recognition, natural language processing and industry-

focused applications such as fraud detection and recommendation systems.  

Deep Learning (DL) has become a true enabler of AI services. In fact, it is the key driver 

behind today’s entire field of AI with its real-life practical applications. DL’s business 

utilization and its ability to support business objectives have enabled AI services to take a 

hot spot at the company strategic table. From life and health sciences, through 

engineering and financial modeling, to natural language processing and image 

recognition, the employment of DL is growing exponentially year by year. This growth in 

applications of AI services is primarily due to the infrastructure behind the curtain and its 

utilization of parallel computing with increasingly more advanced GPU technologies to 

enable such progress. 

As the computational power of the machines grow exponentially, the need come to move 

to higher computation CPUs, when CPUs couldn’t provide enough solutions then 

technology leaped from CPU to GPU. For DL to take full advantage of the GPU 

hardware architecture and acceleration, there needs to be an “easy” way to allow 

algorithms to leverage, scale up and consume underlying infrastructure. DL frameworks 

represent and combine such sets of tools, interfaces, and libraries, which allow data 
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scientists, engineers, and developers to build, deploy and manage their training models 

and networks. They are the building blocks of modern DL deployments. Today, the most 

popular DL Frameworks include, but are not limited to Tensorflow, Keras, Caffe 2, 

Pytorch, Theano, Chainer, CNTK, and MXNET. Each of these frameworks is built in a 

different manner and serves different purposes. 

1.3 Deep Learning Using GPU 

Deep Learning Neural Networks are becoming continuously more complex. The number 

of layers and neurons in a Neural Network is growing significantly, which lowers 

productivity and increases costs. DL deployments leveraging GPUs [2] drastically reduce 

the size of the hardware deployments, increase scalability, dramatically reduce the 

training and ROI times and lower the overall deployment cost. The new GPU based 

systems with access to the latest NVIDIA GPU architectures with PCIe interface or with 

NVLink interconnections can utilize the access to a massive amount of DL computing 

power by using GPU clusters. 

1.4 Neural Nets 

There are three classes of artificial neural networks in general. They are: 

Multilayer Perceptrons (MLPs) 

Convolutional Neural Networks (CNNs) 

Recurrent Neural Networks (RNNs) 

In this project we have extensively used RNNs [3] because of their internal memory. 

RNNs are able to remember important things about the input they receive, which enables 

them to be very precise in predicting the future value. 
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 1.4.1 Recurrent Neural Nets 

RNNs are the state of the art algorithm for sequential data and used by Apples Siri and 

Googles Voice Search. This is because, it is the first algorithm that remembers its input, 

due to an internal memory, which makes it perfectly suited for Machine Learning 

problems that involve sequential data. It is one of the algorithms behind the scenes of the 

amazing achievements of Deep Learning [2] in the past few years. In a RNN, the 

information cycles through a loop. When it makes a decision, it takes into consideration 

the current input and also learned values received from previous inputs. Therefore a RNN 

has two inputs, the present and the recent past.  A usual RNN has a short-term memory. 

In combination with a LSTM [4] they also have a long-term memory which is very 

powerful and used in computation of complex datasets.  

1.5 Motivation 

 The single CPU machine learning is old. It’s there from 1959 which is coined by 

Samuel, Arthur L [5].It was published in IBM Journal of Research and Development.  

Then comes GPU. GeForce 256 was marketed as "worlds first 'GPU', or “Graphics 

Processing Unit”, a term coined by NVIDIA at that time as "a single-chip processor with 

integrated lighting, triangle setup/clipping, and rendering engines that is capable of 

processing a minimum of 10 million polygons per second. The GeForce 256 is the 

original release in NVIDIA's "GeForce" product-line announced on August 31, 1999 and 

released on October 11, 1999. [6] The machine learning using GPU based data 

warehouse is new and still going on. Now a days the rate of data generation is very high 

because of social networking sites, like Facebook, Twitter, WhatsApp, WeChat, 

Instagram and the list goes on. With advancement in technologies, sensor networks, IoT 

things, automated systems generate much more data every seconds. So in near future, the 

data warehouses would be established in multiple geographical areas across the globe. 

Unfortunately, current deep learning methodologies which based on single location or 

single dataset won’t work. Distributed optimization and inference is becoming a 
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prerequisite for solving large scale deep learning problems. At scale no single machine 

can solve these problems efficiently, due to the growth of data and the resulting model 

complexity, often manifesting itself in an increased number of parameters. [7] 

1.6 Thesis Contribution 

 Inspired by Scaling distributed machine learning with the parameter server [8], we 

proposed a cluster based platform which is designed by parameter server architecture.  

The thesis focus on distributed deep learning models to simulate Human Activity 

Recognition. The Deep Learning LSTM model do the iterations on UCI dataset by using 

distributed TensorFlow, PyTorch programming frameworks. This includes writing the 

LSTM residual bidirectional architecture using Python 3 programming language and 

TensorFlow and PyTorch APIs, where both the APIs support the distributed architecture. 

Following which, the program is verified in the distributed platform. To meet the 

distributed hardware demand two platforms are created, first hardware is Raspberry Pi 

cluster having 16 nodes, which is built upon 16 Raspberry Pis 3 B+ models clustered 

together by using parameter server architecture, each having 1 GB of RAM and 32 GB of 

flash storage. Second hardware is, the NVIDIA GPUs cluster which is having 3 GPUs 

named Tesla K40c, Quadro P5000 & Quadro K620. It is built by NVIDIA Maximus 

formation on top of Octa-core Intel Xeon CPU having 32 GB RAM and 2 TB SSD 

primary storage with 10 TB HDD secondary storage.  Thus, comparing and observing the 

performance in terms of executing speed and effieciency of deep learning iterations by 

varying number of deep layers with hidden neurons in GPUs and CPUs. While the first 

approach is based on using TensorFlow and PyTorch over NVIDIA GPUs parallel and 

distributed multicore architecture. The second approach is by comparing the execution 

speed and efficiency of CPUs of Pi cluster along with Inter Xeon CPU. The research 

focuses on energy-efficient deep learning computing, which is at the intersection between 

deep learning and distributed computer. 
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1.7 Outline of the Thesis 

The remaining of the thesis is organized in the following. 

Chapter 2 gives some background information about work on the distributed deep 

learning models. It introduces the distributed deep learning APIs of TensorFlow, 

PyTorch. 

Chapter 3 demonstrates related research work on this topic. It introduces the similar 

problems and previous research happened on it. 

Chapter 4 discusses most about the Why LSTM? , Different LTSM architectures and our 

proposed LSTM residual bidirectional layer. 

Chapter 5 shows the preparation of test beds for this research. It shows the related works 

during the hardware cluster development. 

Chapter 6 implements the deep learning models in distributed platform and compares the 

GPU computational power between two API in GPU cluster and the computational power 

between the CPU cluster and standalone CPU machine while doing the iterations. It gives 

all the implementations with execution time and predicted accuracy with varying dense 

layers along with different hidden nodes. 

Chapter 7 is the conclusion of our thesis work.  
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CHAPTER II 

PREVIOUS STUDIES 

 

2.1 Big Data 

We now live in the era of the big data. In this era, the volume of data has exploded. The 

magnitude of data generated and shared by businesses, public administrations, numerous 

industrial sectors, not-for-profit sectors and scientific research has increased 

immeasurably [9]. These data include textual content (i.e. structured, semi-structured as 

well as unstructured) to multimedia content (e.g. videos, images, audio) on a multiplicity 

of platforms (e.g. machine-to-machine communications, social media sites, sensor 

networks, cyber-physical systems and Internet of Things [IoT]). Dobre and Xhafa [10] 

report that every day the world produces around 2.5 quantilion gigabytes of data (2.3 

trillon gigabytes), with 90% of these data generated in the world being unstructured. It is 

assert that by 2020, over 40 Zettabytes (or 40 trillion gigabytes) of data will be generated, 

imitated, and consumed. With this overwhelming amount of complex and heterogeneous 

data pouring from any-where, any-time and any-device there is undeniably an era of Big 

Data – a phenomenon also referred to as the Data Deluge. In essence, Big Data is the 

artifact of each human individual as well as collective intelligence generated and shared 

mainly through the technological environments where virtually anything and everything 
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can be documented, measured and captured digitally, and while doing that transformation 

into data – a process that Mayer-Schönberger and Cukier [11] also referred as 

datafication. Regardless of where Big Data is generated from and shared to, with the 

reality of Big Data come the challenges of analyzing it in a way that brings Big Value.  

Nevertheless, the growth of data in volumes in the digital world seems to out-speed the 

advancement of many extant computing infrastructures. The well-established data 

processing technologies, for example databases and data warehouses are becoming 

inadequate infront of the amount of data the world is going to generate. The massive 

amount of data needs to be analyzed in an iterative, as well as in a time sensitive manner. 

The ability to work with this massive scale of datasets is very critical. Traditional 

computing approaches with a single computer having a multicore processor to deal with 

some amount of data are not suitable for this massive scale datasets. 

In the post-ImageNet [12] era, computer vision and machine learning researchers are 

solving more complicated AI problems using larger datasets which drives the demand for 

more computation. However, Moore’s Law is slowing down, Dennard scaling has 

stopped, and the amount of computation per unit cost and power is no longer increasing 

at its historic rate. This mismatch between supply and demand of computation highlights 

the need for co-designing efficient machine learning algorithms and domain-specific 

hardware architectures for massive scale datasets. The vast design space across algorithm 

and hardware is difficult to be explored by available engineered applications or tools. 

Therefore, we need different architectures with distributed workloads to bridge the gap.  

2.2 TensorFlow 

Created by the Google Brain team, TensorFlow [13] is an open source library for 

numerical computation and large-scale machine learning. TensorFlow bundles together a 

slew of machine learning and deep learning (aka neural networking) models and 

algorithms and makes them useful by way of a common metaphor. It uses Python to 

provide a convenient front-end API for building applications with the framework, while 
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executing those applications in high-performance C++. TensorFlow can train and run 

deep neural networks for handwritten digit classification, image recognition, word 

embeddings, sequence-to-sequence models for machine translation, natural language 

processing, and PDE (partial differential equation) based simulations. TensorFlow 

supports production prediction at scale, with the same models used for training. 

2.2.1 Architecture 

The TensorFlow is a cross-platform library. Figure 1 illustrates its general architecture. C 

API separates user level code in different languages from the core runtime. 

 

 

 

 

 

 

 

 

Figure .1 TensorFlow General Architecture 

Client 

 Defines the computation as a dataflow graph. 

 Initiates graph execution using a session. 

 Distributed Master 

 Prunes a specific subgraph from the graph, as defined by the arguments  

to session.run(). 
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 Partitions the subgraph into multiple pieces that run in different processes and 

devices. 

 Distributes the graph pieces to worker services. 

 Initiates graph pieces execution by worker services. 

 Worker Services (one for each task) 

 Schedule the execution of graph operations using kernel implementations, 

appropriate 

to the available hardware (CPUs, GPUs, etc). 

 Send and receive operation results to and from other worker services. 

 Kernel Implementations 

 Perform the computation for individual graph operations. 

2.3 Distributed TensorFlow 

TensorFlow is designed for large-scale distributed training and inference, but it is also 

flexible enough to support small scale new machine learning models and system-level 

optimizations. 

tf.distribute.Strategy is a TensorFlow API to distribute training across multiple GPUs, 

multiple machines or TPUs. Using this API, users can distribute their existing models and 

training code with minimal code changes. 
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                                           Figure. 2 TensorFlow Master Worker Model 

Client 

Users write the client TensorFlow program that builds the computation graph. This 

program can either directly compose individual operations or use a convenience library 

like the Estimators API to compose neural network layers and other higher-level 

abstractions. TensorFlow supports multiple client languages but prioritized Python and 

C++ for use. The client creates a session, which sends the graph definition to the 

distributed master as a tf.GraphDef protocol buffer. When the client evaluates a node or 

nodes in the graph, the evaluation triggers a call to the distributed master to initiate 

computation. In Figure 3, the client has built a graph that applies weights (w) to a feature 

vector (x), adds a bias term (b) and saves the result in a variable (s). 

The Distributed Master 

The master prunes the graph to obtain the subgraph required to evaluate the nodes 

requested by the client, then partitions the graph to obtain graph pieces for each 

participating device, and caches these pieces so that they may be re-used in subsequent 

steps. 

Since the master sees the overall computation for a step, it applies standard optimizations 
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such as common subexpression elimination and constant folding. It then coordinates 

execution of the optimized subgraphs across a set of tasks. 

 

 

 

 

 

 

 

 

 

 

 

Figure. 3 Distributed Master workflow 

Worker Service 

The worker service in each task handles requests from the master, schedules the 

execution of the kernels for the operations that comprise a local subgraph, and mediates 

direct communication between tasks. TensorFlow optimize the worker service for 

running large graphs with low overhead. This current implementation can execute tens of 

thousands of subgraphs per second, which enables a large number of replicas to make 

rapid, fine-grained training steps. The worker service dispatches kernels to local devices 

and runs kernels in parallel when possible, for example by using multiple CPU cores or 

GPU streams. 
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TensorFlow specialize Send and Recv operations for each pair of source and destination 

device types.Transfers between local CPU and GPU devices use the 

cudaMemcpyAsync() API to overlap computation and data transfer.Transfers between 

two local GPUs use peer-to-peer DMA, to avoid an expensive copy via the host CPU. For 

this reason, working on GPUs using TensorFlow is much faster as compared to CPU.For 

transfers between tasks, TensorFlow uses multiple protocols, including: gRPC over TCP, 

RDMA over Converged Ethernet. 

TensorFlow have preliminary support for NVIDIA's NCCL library for multi-GPU 

communication. The supported API is tf.contrib.nccl. 

 

 

 

 

 

 

Figure. 4 Nvidia MultiGPU NCCL 

The NVIDIA Collective Communications Library (NCCL) implements multi-GPU and 

multi-node collective communication primitives that are performance optimized for 

NVIDIA GPUs. NCCL provides routines such as all-gather, all-reduce, broadcast, 

reduce, reduce-scatter, that are optimized to achieve high bandwidth over PCIe and 

NVLink high-speed interconnect. In Figure 4, it reflects NCCL communication. 

Kernel Implementations 

The runtime contains over 200 standard operations including mathematical array 

manipulation, control flow and state management operations. Each of these operations 
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can have kernel implementations optimized for a variety of devices. In many of the 

operations, kernels are implemented using Eigen::Tensor, which uses C++ templates to 

generate efficient parallel code for multicore CPUs and GPUs; TensorFlow uses libraries 

like cuDNN where a more efficient kernel implementation is possible. TensorFlow 

implements quantization, which enables faster inference in environments such as mobile 

devices and high-throughput datacenter applications, and use the gemmlowp low-

precision matrix library to accelerate quantized computation. (gemmlowp is a library for 

multiplying matrices whose entries are quantized as 8-bit integers. It is used in mobile 

neural network applications. It has received contributions from Intel and ARM, ensuring 

that it is efficient on various mobile CPUs). 

If it is difficult or inefficient to represent a subcomputation as a composition of 

operations, users can register additional kernels that provide an efficient implementation 

written in C++. For better computation, TensorFlow recommends registering own fused 

kernels for some performance critical operations, such as the ReLU and Sigmoid 

activation functions and their corresponding gradients. The XLA Compiler has an 

experimental implementation of automatic kernel fusion. 

TensorFlow provides eager execution mode for developers who need to debug and gain 

introspection into TensorFlow apps, which lets you evaluate and modify each graph 

operation separately and transparently, instead of constructing the entire graph as a single 

opaque object and evaluating it all at once. The TensorBoard visualization suite lets the 

developer inspect and customize the graphs by way of an interactive, web-based 

dashboard. 
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2.4 PyTorch 

PyTorch [14] is a Python open source deep learning framework that was primarily 

developed by Facebook’s artificial intelligence research group and was publicly 

introduced in January 2017. 

Building Block #1: Tensors 

PyTorch provides a basic data structure called a Tensor, which is very similar to 

NumPy’s ndarray. But unlike the latter, tensors can tap into the resources of a GPU to 

significantly speed up matrix operations. 

Building Block #2: Computation Graph 

When a neural network is trained, researchers need to compute gradients of the loss 

function, with respect to every weight and bias, and then update these weights using 

gradient descent. With neural networks hitting billions of weights, doing the above step 

efficiently can make or break the feasibility of training. 

In PyTorch, the computation graph is simply a data structure that allows to efficiently 

apply the chain rule to compute gradients for all of your parameters. 

Building Block #3: Variables and Autograd 

The Variable is just like a Tensor, is a class that is used to hold data. Variables are 

specifically tailored to hold values which change during training of a neural network, i.e. 

the learnable parameters of the network. Tensors on the other hand are used to store 

values that are not to be learned. For example, a Tensor maybe used to store the values of 

the loss generated by each example. 

The graph is differentiated using the chain rule. If any of tensors are non-scalar (i.e. their 

data has more than one element) and require gradient, the function additionally requires 

specifying grad_tensor. It should be a sequence of matching length, which contains 

gradient of the differentiated function with respect to corresponding tensors. 
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Building Block #4: Function 

PyTorch abstracts the need to write two separate functions (for forward, and for 

backward pass), into two member of functions of a single class called 

torch.autograd.Function. 

PyTorch combines Variables and Functions to create a computation graph. 

Dynamic Computation Graphs 

A Dynamic Computational Graph framework is a system of libraries, interfaces, and 

components that provide a flexible, programmatic, run time interface that facilitates the 

construction and modification of systems by connecting operations. PyTorch creates the 

runtime dynamic computation graphs. 

To qualify as a Dynamic Computational Graph framework, the framework must merely 

support the deferring of the determination of algorithm to run time, therefore opening the 

door to a plethora of operations on the computational dependencies and data flow at run 

time. The basics of the operations deferred must include the specification, manipulation, 

execution, and storage of the directed graphs that represent systems of operations. 

 

The advantage of Dynamic Computational Graphs appears to include the ability to adapt 

to a varying quantities in input data. It seems like there may be automatic selection of the 

number of layers, the number of neurons in each layer, the activation function, and other 

neural network parameters, depending on each input set instance during the training.  

 

2.5 MXNet 

MXNet [15] is a deep Learning framework created by Apache, which supports a plethora 

of languages, like Python, Julia, C++, R, or JavaScript. It’s been adopted by Microsoft, 

Intel, and Amazon Web Services. 
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The MXNet framework is known for its great scalability, which is used by large 

companies mainly for speech and handwriting recognition, NLP, and forecasting. 
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CHAPTER III 

RELATED WORKS 

 

3.1 Distributed GraphLab Framework 

There are several distributed machine learning framework works available today. The 

high-level data parallel frameworks, like MapReduce, simplify the design and 

implementation of large-scale data processing systems, but they do not efficiently support 

many important data mining and machine learning algorithms and can lead to inefficient 

learning systems. To fill this critical void, the GraphLab abstraction is introduced which 

naturally expresses asynchronous, dynamic, graph-parallel computations while ensuring 

data consistency and achieving a high degree of parallel performance in the shared-

memory setting. [16]  

Turi is a graph-based, high performance, distributed computation framework written in 

C++. The GraphLab project was started by Prof. Carlos Guestrin of Carnegie Mellon 

University in 2009. It is an open source project using an Apache License. While 

GraphLab was originally developed for Machine Learning tasks, it has found great 

success at a broad range of other data-mining tasks; out-performing other abstractions by 

orders of magnitude. [17] 

As the amounts of collected data and computing power grows (multicores, GPUs, 

clusters, clouds), modern datasets are no longer fit into one computing node. Efficient 
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distributed/parallel algorithms for handling large scale datasets are required. The 

GraphLab framework is a parallel programming abstraction targeted for sparse iterative 

graph algorithms. GraphLab provides a high level programming interface, allowing a 

rapid deployment of distributed machine learning algorithms. [18] The main design 

considerations behind the design of GraphLab are, sparse data with local dependencies, 

iterative algorithms, potentially asynchronous execution.  

Main features of GraphLab are 

 a unified multicore and distributed API, write once run efficiently in both shared 

and distributed memory systems 

 It is tuned for performance by optimized C++ execution engine leverages 

extensive multi-threading and asynchronous IO 

 Scalable, GraphLab intelligently places data and computation using sophisticated 

new algorithms 

 HDFS Integration 

 Powerful Machine Learning Toolkits 

GraphLab framework is extended to the substantially more challenging distributed setting 

while preserving strong data consistency guarante. The developed graph based 

extensions, used to pipelined locking and data versioning to reduce network congestion 

and mitigate the effect of network latency. The introduced fault tolerance in the 

GraphLab abstraction using the classic Chandy-Lamport snapshot algorithm demonstrate 

how easily it can be implemented by exploiting the GraphLab abstraction itself. 

3.2 Parameter Server Framework  

The parameter server is designed to simplify developing distributed machine learning 

applications as shown in Figure. 5 [8]. An instance of the parameter server can run more 

than one algorithm simultaneously. Parameter server nodes are grouped into a server 

group and several worker groups as shown in Figure 5. A server node in the server group 
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maintains a partition of the globally shared parameters. Server nodes communicate with 

each other to replicate and/or to migrate parameters for reliability and scaling. A server 

manager node maintains a consistent view of the metadata of the servers, such as node 

liveness and the assignment of parameter partitions. Each worker group runs an 

application. A worker typically stores locally a portion of the training data to compute 

local statistics such as gradients. Workers communicate only with the server nodes (not 

among themselves), updating and retrieving the shared parameters. There is a scheduler 

node for each worker group. It assigns tasks to workers and monitors their progress. If 

workers are added or removed, it reschedules unfinished tasks. 

The parameter server supports independent parameter namespaces. This allows a worker 

group to isolate its set of shared parameters from others. Several worker groups may also 

share the same namespace: we may use more than one worker group to solve the same 

deep learning application [19] to increase parallelization. Another example is that of a 

model being actively queried by some nodes, such as online services consuming this 

model. Simultaneously the model is updated by a different group of worker nodes as new 

training data arrives. 

The shared parameters are presented as (key, value) vectors to facilitate linear algebra 

operations. They are distributed across a group of server nodes. Any node can both push 

out its local parameters and pull parameters from remote nodes. By default, workloads, or 

tasks, are executed by worker nodes; however, they can also be assigned to server nodes 

via user defined functions. Tasks are asynchronous and run in parallel. The parameter 

server provides the algorithm designer with flexibility in choosing a consistency model 

via the task dependency graph and predicates to communicate a subset of parameters. 
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Figure. 5 Parameter Server Framework 

3.2.1 Distributed Synchronous Stochastic Gradient Descent 

 

 

 

 

 

 

Figure. 6 Distributed SGD  



 
 
 

22 
 

In Figure. 6 each node independently calculates gradients by worker nodes. 

In real time scenario, each training node performs the forward-backward pass on different 

batches sampled from the training dataset with the same network model. The gradients 

from all nodes are summed up to optimize their models. By this synchronization step, 

models on different nodes are always the same during the training. The aggregation step 

can be achieved in two ways. One method is using the parameter servers as the 

intermediary which store the parameters among several servers [20]. The nodes push the 

gradients to the servers while the servers are waiting for the gradients from all nodes. 

Once all gradients are sent, the servers update the parameters, and then all nodes pull the 

latest parameters from the servers.  

One major disadvantage is network bandwidth. Large-scale distributed training improves 

the productivity of training deeper and larger models (Chilimbi et al., 2014; Xing et al., 

2015; Moritz et al., 2015; Zinkevich et al., 2010). Synchronous stochastic gradient 

descent (SGD) is widely used for distributed training. By increasing the number of 

training nodes and taking advantage of data parallelism, the total computation time of the 

forward-backward passes on the same size training data can be dramatically reduced. 

However, gradient exchange is costly and dwarfs the savings of computation time (Li et 

al., 2014; Wen et al., 2017), especially for recurrent neural networks (RNN) where the 

computation-to-communication ratio is low. Therefore, the network bandwidth becomes 

a significant bottleneck for scaling up distributed training. [21] 
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Algorithm 1.  Distributed Subgradient Descent 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Algorithm 1, the training data is partitioned among all the workers, which 

jointly learn the parameter vector w. Because each worker works independently, the 

system uses a mechanism by expressing the updates as a subgradient—a direction in 

which the parameter vector w should be shifted and aggregates all subgradients before 

applying them to w. Data is sent between nodes using push and pull operations. A tasks is 

issued by a remote procedure call. It can be a push or a pull that a worker issues to 

servers. It can also be a user-defined function that the scheduler issues to any node. Tasks 

may include any number of subtasks. Tasks are executed asynchronously. In Algorithm 
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1, a worker pushes its temporary local gradient g to the parameter server for aggregation. 

The most expensive step in Algorithm 1 is computing the subgradient to update w. This 

task is divided among all of the workers, each of which execute WORKERITERATE. 

The task WORKERITERATE in Algorithm 1 contains one push and one pull. In 

Algorithm 1 each worker pushes its entire local gradient into the servers, and then pulls 

the updated weight back. The aggregation logic in SERVERITERATE updates the 

weight w only after all worker gradients have been aggregated.  

3.3 Deep Gradient Compression 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 7 Deep Gradient Compression 

Deep Gradient Compression (DGC) solves the communication bandwidth problem by 

compressing the gradients, as shown in Figure 8. To ensure no loss of accuracy, DGC 

employs momentum correction and local gradient clipping on top of the gradient 

sparsification to maintain model performance. DGC also uses momentum factor masking 

and warmup training to overcome the staleness problem caused by reduced 

communication. [21] 
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Techniques in Deep Gradient Compression 

Gradient Sparsification  

Reduce the communication bandwidth by sending only the important gradients. 

User the gradient magnitude as a simple heuristics for importance. 

Only gradients larger than a threshold are transmitted which is top 0.01%.  

 

Local Gradient Accumulation Gradient Accumulation algorithms represent an 

important component of distributed training systems. These algorithms are responsible 

for accumulating the local gradients from each worker node and distributing the updated 

global gradients back to the worker nodes. The All Reduce algorithm makes for a very 

good fit for this functionality and also removes the need for a master server by espousing 

a peer to peer paradigm for data exchange. 

Local Gradient Clipping Gradient clipping is widely adopted to avoid the exploding 

gradient problem [22]. The method proposed by Pascanu et al. (2013) rescales the 

gradients whenever the sum of their L2-norms exceeds a threshold. This step is 

conventionally executed after gradient aggregation from all nodes. The accumulation of 

gradients over iterations on each node can be performed independently, where the 

gradient clipping is performed locally before adding the current gradient Gt to previous 

accumulation (Gt-1 in Algorithm 2) [23]. 

Momentum Factor Masking Mitliagkas et al. (2016) discussed the staleness caused by 

asynchrony and described it as implicit momentum. Inspired by that, it introduce 

momentum factor masking, to alleviate staleness. Instead of searching for a new 

momentum coefficient as suggested in Mitliagkas et al. (2016) [24], it simply apply the 

same mask to the accumulated gradients. This mask stops the momentum for delayed 

gradients, preventing the stale momentum from carrying the weights in the wrong 

direction. 
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Algorithm 2.  All-reduce Algorithm with local gradient clipping 

 

 

 

 

 

 

 

 

When training the recurrent neural network with gradient clipping, gradient clipping is 

performed locally before adding the current gradient Gk
t to previous accumulation Gk

t-1  

in Algorithm 2. 
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CHAPTER IV 

HUMAN ACTIVITY RECOGNITION  

USING LSTM 

 

 

4.1 HUMAN ACTIVITY RECOGNITION 

 Human Activity Recognition (HAR) is a broad field of study concerned with an 

ability to interpret human body gesture or motion via sensors and determine human 

activity or action [25]. Most of the human daily tasks can be simplified or automated if 

they can be recognized via HAR system. Typically, HAR system can be either supervised 

or unsupervised [26]. A supervised HAR system requires some prior training with 

dedicated datasets while unsupervised HAR system is being configured with a set of rules 

during development. HAR is considered as an important component in various scientific 

research contexts i.e. surveillance, healthcare and human computer interaction (HCI)  

However, it remains a very complex task, due to unsolvable challenges such as sensor 

motion, sensor placement, cluttered background, and inherent variability in the way 

activities are conducted by different human. HAR covers three area of sensing 

technologies namely RGB cameras, depth sensors and wearable devices.  The popularity 

of depth sensors and wearable devices in HAR research is well established.  
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4.1.1. Surveillance System  

In surveillance context, HAR was adopted in surveillance systems installed at public 

places i.e. shopping malls or airports, which introduced a new paradigm of human 

activity prediction to prevent crimes and dangerous activities from occurring at public 

places. Lasecki et al. proposed a system that provides robust, deploy-able activity 

recognition by supplementing existing recognition systems with on-demand, real-time 

activity identification using inputs from the crowds at public places [27].  

4.1.2. Healthcare  

 In the field of Healthcare, HAR is employed in healthcare systems which are 

installed in residential environment, hospitals and rehabilitation centers. HAR is used 

widely for monitoring the activities of elderly people staying in rehabilitation centers for 

chronic disease management and disease prevention [28]. HAR is also integrated into 

smart homes for tracking the elderly people’s daily activities [29]. Besides, HAR is used 

to encourage physical exercises in rehabilitation centers for children with motor 

disabilities [30], post-stroke motor patients, patients with dysfunction and psycho motor 

slowing, and exergaming [31]. Other than that, the HAR is adopted in monitoring patients 

at home such as estimation of energy expenditure to aid in obesity prevention and 

treatment and life logging. HAR is also applied in monitoring other behaviors such as 

stereotypical motion conditions in children with Autism Spectrum Disorders (ASD) at 

home, abnormal conditions for cardiac patients and detection of early signs of illness. 

Other healthcare related HAR solutions such as fall detection and intervention for elderly 

people are available [32].  



 
 
 

29 
 

4.1.3. Human Computer Interaction 

  In the field of human computer interaction, HAR has been applied quite 

commonly in gaming and exergaming such as Kinect, Nitendo Wii and full-body motion 

based games for older adults and adults with neurological injury [33]. Through HAR, 

human body gestures are recognized to instruct the machine to complete dedicated tasks. 

Elderly people and adults with neurological injury can perform a simple gesture to 

interact with games and exergames easily. HAR also enables surgeons to have intangible 

control of the intraoperative image monitor by using standardized free-hand movements 

[34].  

 

4.1.4 HAR Sensing Technologies 

 Recognizing human activity using RGB camera is simple but having low 

efficiency. A RGB camera is usually attached to the environment and the HAR system 

will process image sequences captured with the camera. Most of the conventional HAR 

systems using this sensing technology are built with two major components which is the 

feature extraction and classification [35]. Besides, most of the RGB-HAR systems are 

considered as supervised system where trainings are usually needed prior to actual use. 

Image sequences and names of human activities are fed into the system during training 

stage. Real time captured image sequence are passed to the system for analysis and 

classification by dedicated computational/classification algorithms such as Support 

Vector Machine (SVM). 

 The depth sensor also known as infrared sensor or infrared camera is adopted into 

HAR systems for recognizing human activities. The depth sensor projects infrared beams 

into the scene and recapture them using its infrared sensor to calculate and measure the 

depth or distance for each beam from the sensor. The reviews found that Microsoft 

Kinect sensor is commonly adopted as depth sensor in HAR [33]. Since the Kinect sensor 
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has the capability to detect 20 human body joints with its real-world coordinate, many 

researchers utilized the coordinates for human activity classification.  

 HAR using wearable-based requires single or multiple sensors to be attached to 

the human body. Most commonly used sensor includes 3D-axial accelerometer, 

magnetometer, gyroscope and RFID tag. With the advancement of current smart phone 

technologies, many research works use mobile phone as sensing devices because most 

smart phones are equipped with accelerometer, magnetometer and gyroscope [36]. A 

physical human activity can be identify easily through analyzing the data generated from 

various wearable sensing after being process and determine by classification algorithm.  

4.2 Dataset (UCI Repository) 

 

4.2.1 Data Set Information 

The dataset named “Human Activity Recognition Using Smartphones Data Set” [37] is 

used from UCI repository in this thesis. The experiments have been carried out with a 

group of 30 volunteers within an age bracket of 19-48 years. Each person performed six 

activities (WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, 

SITTING, STANDING, LAYING) wearing a smartphone (Samsung Galaxy S II) on the 

waist. Using its embedded accelerometer and gyroscope, they captured 3-axial linear 

acceleration and 3-axial angular velocity at a constant rate of 50Hz. The experiments 

have been video-recorded to label the data manually. The obtained dataset has been 

randomly partitioned into two sets, where 70% of the volunteers was selected for 

generating the training data and 30% the test data.  

The sensor signals (accelerometer and gyroscope) were pre-processed by applying noise 

filters and then sampled in fixed-width sliding windows of 2.56 sec and 50% overlap 

(128 readings/window). The sensor acceleration signal, which has gravitational and body 

motion components, was separated using a Butterworth low-pass filter into body 
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acceleration and gravity. The gravitational force is assumed to have only low frequency 

components, therefore a filter with 0.3 Hz cutoff frequency was used. From each 

window, a vector of features was obtained by calculating variables from the time and 

frequency domain.  

 

4.2.2 Attribute Information 

For each record in the dataset it is provided:  

→ Triaxial acceleration from the accelerometer (total acceleration) and the estimated 

body acceleration. 

→ Triaxial Angular velocity from the gyroscope. 

→ A 561-feature vector with time and frequency domain variables. 

→ Its activity label. 

→ An identifier of the subject who carried out the experiment. 

 

4.2.3 Feature Notes 

→ Features are normalized and bounded within [-1, 1]. 

→ Each feature vector is a row on the text file. 

→ The units used for the accelerations (total and body) are 'g's (gravity of earth → 

9.80665 m/sec2). 

→ The gyroscope units are rad/sec. 

 

 

 

 

 

 

 



 
 
 

32 
 

The file structure inside dataset are described in Table 1. 

 

File name Information 

activity_labels.txt Links the class labels with their activity 

name. 

features_info.txt Shows information about the variables used 

on the feature vector. 

features.txt List of all features. 

README.txt Information about dataset details 

test/X_test.txt Test set 

test/y_test.txt Test labels 

train/X_train.txt Training set 

train/y_train.txt Training labels 

Inertial Signals/body_acc_x_train.txt 

Inertial Signals/body_acc_y_train.txt 

Inertial Signals/body_acc_z_train.txt 

The body acceleration signal obtained by 

subtracting the gravity from the total 

acceleration. Every row shows a 128 

element vector. The same description 

applies for the 'body_acc_y_train .txt' and 

'body_acc_z_train .txt' files for the Y and Z 

axis.  

Inertial Signals/body_gyro_x_train.txt 

Inertial Signals/body_gyro_y_train.txt 

Inertial Signals/body_gyro_z_train.txt 

The angular velocity vector measured by 

the gyroscope for each window sample. 

The units are radians/second. Every row 

shows a 128 element vector. The same 
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description applies for the  

‘body_gyro_y_train.txt' and 

'body_gyro_z_train.txt' files for the Y and 

Z axis.  

Inertial Signals/total_acc_x_train.txt 

Inertial Signals/total_acc_y_train.txt 

Inertial Signals/total_acc_z_train.txt 

The acceleration signal from the 

smartphone accelerometer X axis in 

standard gravity units 'g'. Every row shows 

a 128 element vector. The same description 

applies for the 'total_acc_y_train.txt' and 

'total_acc_z_train.txt' files for the Y and Z 

axis.  

Table. 1 Dataset Feature Parameters 
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The Figure. 8 shows the hierarchy of the file structure inside dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 8 Dataset File Structure 
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4.3 LSTM 

 LSTM network was proposed by Jürgen Schmidhuber in 1997 [4], is a variant of 

recurrent neural networks (RNNs). It has special inner gates that allow for consistently 

better performance than RNN for time series. Compared with other networks, such as 

CNN, restricted Boltzmann machine (RBM) and auto-encoder (AE), the structure of the 

LSTM renders it especially good at solving problems involving time series, such as those 

related to natural language processing, speech recognition, and weather prediction, 

because its design enables gradients to flow through time readily. 

4.3.1 Why LSTM? 

4.3.1.1 CNN 

The basic difference between a feed forward neuron and a recurrent neuron is shown in 

Figure 9.  

 

 

 

 

 

 

 

Figure. 9 Basic Feed-Forward and Recurrent cell  
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 The feed forward neuron has two weights which connects from his input to his 

output.  The recurrent neuron has also a connection from his output again to his input and 

therefore it has three weights. When many feed-forward layers are connected together, 

they form a Convolutional Neural Network (CNN).   This third extra connection is called 

feed-back connection and with that the activation can flow round in a loop.  

When many feed forward and recurrent neurons are connected, they form a Recurrent 

Neural Network (RNN). The major difference between CNN and RNN is that CNN is a 

feed-forward neural network, while RNN is a recurrent neural network. In CNN, the 

information only flows in the forward direction, while in RNN, the information flows 

back and forth.  

In mathematics, a convolution is a grouping function. In CNNs, convolution happens 

between two matrices (rectangular arrays of numbers arranged in columns and rows) to 

form a third matrix as an output. A CNN uses these convolutions in the convolutional 

layers to filter input data and find information.  

The University of Toronto researchers Alex Krizhevsky, Ilya Sutskever and Geoffrey 

Hinton trained a deep convolutional neural network to classify the 1.2 million images 

from the ImageNet Large Scale Visual Recognition Challenge contest, winning with a 

record-breaking reduction in error rate [12]. This sparked today’s modern AI boom. 

The convolutional layer does most of the computational works in a CNN. It acts as the 

mathematical filters that help computers find edges of images, dark and light areas, 

colors, and other details, such as height, width and depth. 

There are usually many convolutional layer filters applied to an image. 

Pooling layer: Pooling layers are often sandwiched between the convolutional layers. 

They’re used to reduce the size of the representations created by CNN and reduce the 

memory requirements, which allows for more convolutional layers. 
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Normalization layer: Normalization is a technique used to improve the performance and 

stability of neural networks. There are different types of normalization available in CNN. 

Those are Weight Normalization [38], Layer Normalization [39], and Batch 

Normalization [40]. 

Fully connected layers: Fully connected layers connect every neuron in one layer to 

every neuron in another layer. It is using the same principle as the traditional multi layer 

perceptron neural network (MLP). The flattened matrix goes through a fully connected 

layer to classify the images. 

Then the back propagation is used to calculate the gradients of error with respect to all 

the weights in the network. Back propagation is the method by which a neural network is 

trained. It doesn't have much to do with the structure of the network, but rather implies 

how input weights are updated. When training a feed forward network, the information is 

passed into the network, and the resulting classification is compared to the known 

training sample. If the network's classification is incorrect, the weights are adjusted 

backward through the network in the direction that would give it the correct 

classification. This is called the backward propagation of the training. So CNN is a feed-

forward network, but is trained through back-propagation. 

CNNs are ideally suited for computer vision, but feeding those enough data can make 

them useful in videos, speech, music and text as well. 

4.3.1.2 Back Propagation  

Algorithm 3. Back Propagation algorithm.  

Consider a network with a single real input x and network function P. The derivative 

P'(x) is computed in two phases: (1) Feed-forward: the input x is fed into the network. 

The primitive functions at the nodes and their derivatives are evaluated at each node. The 

derivatives are stored. (2)Back propagation: the constant 1 is fed into the output unit and 

the network is run backwards. Incoming information to a node is added and the result is 
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multiplied by the value stored in the left part of the unit. The result is transmitted to the 

left of the unit. The result collected at the input unit is the derivative of the network 

function with respect to x. 

Back propagation is based around four fundamental equations. Together, those equations 

give us a way of computing both the error δl and the gradient of the cost function. The 

four equations are shown below [41]. 

An equation for the error in the output layer, δL: The components of δL are given by  

 

 

 

This is a very natural expression. The first term on the right, ∂C/∂aL
j, just measures how 

fast the cost is changing as a function of the jth output activation. If, for example, C 

doesn't depend much on a particular output neuron, j, then δL
j will be small, which is as 

expected. The second term on the right, σ′(zL
j ), measures how fast the activation function 

σ is changing at zL
j. 

An equation for the error δl in terms of the error in the next layer, δl+1:  

 

 

 

 

where (wl+1)T is the transpose of the weight matrix wl+1 for the (l+1)th layer. When we 

apply the transpose weight matrix (wl+1)T, we can think of it as moving the error 

backward through the network, which gives some sort of measure of the error at the 

output of the lth layer. This moves the error backward through the activation function in 

layer l, which gives us the error δl in the weighted input to layer l. 
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By combining (BP2) with (BP1), the error δl can be computed for any layer in the 

network. 

An equation for the rate of change of the cost with respect to any bias in the 

network: 

 

 

 

The error δl
j is exactly equal to the rate of change ∂C/∂bl

j , which is the same as, 

calculating error by (BP1) and (BP2) to compute δl
j . We can rewrite (BP3)  

as ∂C/∂b = δ , where δ is being evaluated at the same neuron as the bias b. 

 

An equation for the rate of change of the cost with respect to any weight in the 

network: 

 

 

 

This gives us to compute the partial derivatives ∂C/∂wl
jk in terms of the quantities δl and 

al-1 .The equation can be rewritten as  

 

 

where it's shown that, ain is the activation of the neuron input to the weight w, and δout is 

the error of the neuron output from the weight w. 
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 If we look at the weight w, and the two neurons connected by that weight, we can depict 

this as: 

 

 

 

 

 

Figure. 10 Two Connected Neurons with weights 

The above back propagation rules are summarized in Figure 11. 

Figure.11 Back Propagation Rule 
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Figure. 12 Convolution Neural Network  

The overall training process of the Convolution Network may be summarized as below: 

Step1: We initialize all filters and parameters / weights with random values 

Step2: The network takes a training image as input, goes through the forward 

propagation step (convolution, ReLU and pooling operations along with forward 

propagation in the Fully Connected layer) and finds the output probabilities for each 

class. 

 Let’s say the output probabilities for the boat image above are [0.2, 0.4, 

0.1, 0.3] 

 Since weights are randomly assigned for the first training example, 

output probabilities are also random. 

Step3: Calculate the total error at the output layer (summation over all 4 classes) 

Total Error = ∑ ½(target probability– output probability)² 

Step4: Use Backpropagation to calculate the gradients of the error with respect to 

all weights in the network and use gradient descent to update all filter values / 

weights and parameter values to minimize the output error. 
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 The weights are adjusted in proportion to their contribution to the total 

error. 

 When the same image is input again, output probabilities might now be 

[0.1, 0.1, 0.7, 0.1], which is closer to the target vector [0, 0, 1, 0]. 

 This means that the network has learnt to classify this particular image 

correctly by adjusting its weights / filters such that the output error is 

reduced. 

 Parameters like number of filters, filter sizes, architecture of the network 

etc. have all been fixed before Step 1 and do not change during training 

process – only the values of the filter matrix and connection weights get 

updated. 

Step5: Repeat steps 2-4 with all images in the training set.   

The CNN have now been optimized to correctly classify images from the training 

set. 

4.3.1.3 RNN 

The major limitation of CNN is that they accept a fixed-sized vector as input and produce 

a fixed-sized vector as output which is the probabilities of different classes. Then these 

models perform the mapping using a fixed amount of computational steps or the number 

of layers in the model. They are enlisted as giant sequence of filters or neurons in these 

hidden layers that all optimize toward efficiency in identifying an image. Therefore, 

CNNs are called “feed-forward” neural networks because information is fed from one 

layer to the next. However, RNN is trained to recognize patterns across time, while a 

CNN learns to recognize patterns across space and hence a CNN learns to recognize 

components in an image like lines, edges, curves, etc. 
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RNN offers two major advantages: 

Store Information 

The recurrent network can use the feedback connection to store information over time in 

form of activations. This ability is significant for many applications. In the recurrent 

networks, they have some form of memory.                                                     

Learn Sequential Data 

The main reason for using RNN, they allow us to operate over sequences of vectors. In 

Figure. 13, with RNN approach one to many, many to one and many to many inputs to 

outputs are possible.  

 

 

  

 

 

 

 

 

Figure. 13 RNN Sequential Data Learning Approach   

In Figure. 13, each rectangle is a vector and arrows represent functions (e.g. matrix 

multiply). Input vectors are in red, output vectors are in blue and green vectors hold the 

RNN's state. The RNN can handle sequential data of arbitrary length. From left to right as 

shown in Figure 11: (1) On the left the default feed forward CNN is shown, which can 

just compute from fixed-sized input to fixed-sized output (e.g. image classification). (2) 
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Sequence output (e.g. image captioning takes an image and outputs a sentence of words). 

(3) Sequence input (e.g. sentiment analysis where a given sentence is classified as 

expressing positive or negative sentiment). (4) Sequence input and sequence output (e.g. 

Machine Translation: an RNN reads a sentence in English and then outputs a sentence in 

French). (5) Synced sequence input and output (e.g. video classification where we wish to 

label each frame of the video).  

Notice that in every case, there are no pre-specified constraints on the length sequences 

because the recurrent transformation (green) is fixed and can be applied as many times as 

required. 

 Recurrent neural networks (RNNs) are connectionist models that capture the 

dynamics of sequences via cycles in the network of nodes. Unlike standard CNNs, RNNs 

retain a state that can represent information from an arbitrarily long context window. 

RNNs combine the input vector with their state vector with a fixed (but learned) function 

to produce a new state vector. All recurrent neural networks have the form of a chain of 

repeating modules of neural network as shown in Figure 14. In standard RNNs, this 

repeating module will have a very simple structure, such as a single tanh layer.  

 

 

 

 

 

 

 

Figure. 14 Simple RNN Structure 
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Computational Power of Recurrent Networks 

From the point of view of automata theory, all that is relevant is the identification of a set 

of internal states which characterize the status of the device at a given moment in time, 

together with the specification of rules of operation which predict the next state on the 

basis of the current state and the inputs from the environment [42].  

 

Theorem 1: Rational-weighted RNNs having boolean activation functions (simple 

thresholds) are equivalent to finite state automata [43]. 

Proof: Proof shown in [43] 

 

Theorem 2: Rational-weighted RNNs having linear sigmoid activation functions are 

equivalent to Turing Machines [44]. 

Proof: Proof shown in [44] 

 

Theorem 3: Real-weighted RNNs having linear sigmoid activation functions are more 

powerful than Turing Machines. Siegelmann and Sontag noted that these networks are 

not likely to solve polynomially NP-hard problems, as the equality “P=NP” in their 

model implies the almost complete collapse of the standard polynomial hierarchy [45]. 

Proof: Proof shown in [45] 

 

Theorem 4:  

All Turing machines may be simulated by fully connected recurrent networks built of 

neurons with sigmoidal activation functions [46]. 

In his model, all neurons synchronously update their states according to a quadratic 

combination of past activation values. Proof: Proof shown in [46] 
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Long-Term Dependencies Problems 

What happened to Recurrent Networks? One major drawback of RNNs is that the range 

of contextual information is limited and the Backpropagation through time (BPTT) [47] 

does not store information over long time period. This is noticeable in either vanishing or 

exploding outputs of the network, which is known as vanishing gradient problem or 

exploding gradient problem [48].  

These problems arise during training of a deep network when the gradients are being 

propagated back in time all the way to the initial layer. The gradients coming from the 

deeper layers have to go through continuous matrix multiplications because of the chain 

rule, and as they approach the earlier layers, if they have small values (<1), they shrink 

exponentially until they vanish and make it impossible for the model to learn, this is the 

vanishing gradient problem. While on the other hand if they have large values (>1) they 

get larger and eventually blow up and crash the model, this is the exploding gradient 

problem. 

Dealing with Exploding Gradients 

When gradients explode, it become NaN because of the numerical overflow, which 

results irregular oscillations in training cost when the learning curve is plotted. A solution 

to fix this is to apply gradient clipping; which places a predefined threshold on the 

gradients to prevent it from getting too large, and by doing so, it doesn’t change the 

direction of the gradients but it only changes its length. 

4.3.1.4  LSTM  

What makes LSTM so desirable? For dealing with Vanishing Gradients, Long Short-

Term Memory architecture (LSTM) is most popular and a widely used approach. This is 

a different variant of RNN which was designed to make it easy to capture long-term 

dependencies in sequence data. The standard RNN operates in such a way that the hidden 

state activations are influenced by the other local activations closest to them, which 
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corresponds to a “short-term memory”, while the network weights are influenced by the 

computations that take place over entire long sequences, which corresponds to a “long-

term memory”. Hence the RNN was redesigned so that it has an activation state that can 

also act like weights and preserve information over long distances, hence the name “Long 

Short-Term Memory” [4]. 

4.3.1.5 Distributed LSTM 

What is the need of distributed machine for LSTM? Recurrent neural networks (RNNs) 

have been widely used for processing sequential data. However, RNNs are commonly 

difficult to train due to the well-known gradient vanishing and exploding problems and 

hard to learn long-term patterns. Long short-term memory (LSTM) and gated recurrent 

unit (GRU) were developed to address these problems [49]. 

The LSTM architectures are usually trained in a batch setting in the architecture, where 

all data instances are present and processed together. However, for applications involving 

big data, storage issues may arise due to keeping all the data in one place. Additionally, 

in certain frameworks, all data instances are not available beforehand since instances are 

received in a sequential manner, which precludes batch training. As every second the data 

size is growing exponentially, in coming years most big corporations will suffer from 

computational power and storage issues due to large amount of data. As an example, in 

tweet emotion recognition applications, the systems are usually trained using an 

enormous amount of data to achieve sufficient performance, especially for agglutinative 

languages [50]. 

 In the common distributed architectures, the whole data is distributed to different nodes 

but the trained parameters are merged later at a central node. However, this centralized 

approach requires high storage capacity and computational power at the central node. 

Additionally, centralized strategies have a potential risk of failure at the central node. To 

circumvent these issues, we distribute both the processing as well as the data to all the 
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nodes and allow communication only between neighboring nodes, hence, we remove the 

need for a central node. In particular, each node sequentially receives a variable length of 

data sequence with its label and exchanges information only with its neighboring nodes 

to train the common LSTM parameters. There are two approaches to achieve this 

architecture. By the use of parameter server framework, this scalable distributed deep 

learning approach can be achieved where both data and workloads are distributed over 

worker nodes, while the server nodes maintain global shared parameters, represented as 

dense or sparse vectors and matrices. Here the worker nodes process data and compute 

local gradients on a mini-batch. They then send push (key, gradient) messages to the 

servers. Those process the updates asynchronously. When needed, the workers pull them 

back with a pull (key) request. A lot of the infrastructure is borrowed from distributed 

(key, value) storage such as memcached. Memcached is a high-performance, distributed 

memory object caching system, generic in nature, but originally intended for use in 

speeding up dynamic web applications by alleviating database load[51].The framework 

manages asynchronous data communications between nodes and supports flexible 

consistency models, elastic scalability and continuous fault tolerance[8]. 

 The other approach is synchronous distributed stochastic gradient descent (SGD), which 

is known as distributed synchronous SGD. In practice, each training node performs the 

forward-backward pass on different batches sampled from the training dataset with the 

same network model. The gradients from all nodes are summed up to optimize their 

models. By this synchronous step, models of different nodes are always the same during 

the training. The aggregation step can be achieved by performing the All-reduce 

operation on the gradients among all nodes and to update the parameters on each node 

independently [52].  

4.3.1.5.1 Synchronous all-reduce SGD 

In traditional synchronous all-reduce SGD, there are two alternating phases proceeding in 

lock-step:(1) each node computes its local parameter gradients, and (2) all nodes 
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collectively communicate all-to-all to compute an aggregate gradient, as if they all 

formed a large distributed minibatch.  

The second phase of exchanging gradients forms a barrier and is the communication-

intensive phase, usually implemented by an eponymous all-reduce operation. The time 

complexity of an all-reduction can be decomposed into latency-bound and bandwidth-

bound terms. Although the latency term scales with O (log (p)), there are fast ring 

algorithms which have bandwidth term independent of p [52]. With modern networks 

capable of handling bandwidth on the order of 1–10 GB/s combined with neural network 

parameter sizes on the order of 10–100 MB, the communication of gradients or 

parameters between nodes across a network can be very fast.  

Instead, the communication overhead of all-reduce results from its use of a 

synchronization barrier, where all nodes must wait for all other nodes until the all-reduce 

is complete before proceeding to the next stochastic gradient iteration. This directly leads 

to a straggler effect where the slowest nodes will prevent the rest of the nodes from 

making the progress. [53] 

Algorithm 4.  Synchronous all-reduce SGD 

Initialize θ0, i ← θ0 

for t ∈ {0. . . T} do 

   ∆θt,i ← −αt∇fi (θt,i ; Xt,i) + µ∆θt-1 

  ∆θt ← all-reduce-average (∆θt,i )  

  θt+1,i ← θt,i + ∆θt 

end for 
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4.3.2 Baseline LSTM  

 

LSTM is an extension of recurrent neural networks. Due to its special architecture, which 

combats the vanishing and exploding gradient problems, it is good at handling time series 

problems up to a certain depth. The input gate, the forget gate, and the output gate of LSTM 

are designed to control what information should be forgotten, remembered, and updated.   

 

 

Figure. 15 LSTM Forget Gate  

As shown in Figure. 15, First there is a need to forget old information, which involves the 

forget gate.  In the first step of LSTM forget gate looks at ht-1 and xt to compute the 

output ft which is a number between 0 and 1 for each cell state number. This is multiplied 

by the cell state Ct-1 and yield the cell to either forget everything or keep the information 

which is based on zero or one. For example a value of 0.5 means that the cell forgets 50% 

of its information. It is considered a good practice to initialize these gates to a value of 1, 

or close to 1, so as to not impair training at the beginning. 
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Figure. 16 LSTM Input Gate 

 

 

As shown in Figure. 16, the next step is to determine what new information needs to keep 

in memory with an input gate. This has two parts. First, a sigmoid function called the “input 

gate” decides which values need to update. Next, a tanh function creates a vector of new 

candidate values, Ct, which could be added to the state. From that, it is possible to update 

the old cell state, to the new cell state, Gating is a method to selectively pass the needed 

information.  

 

 

 

Figure. 17 LSTM Processing Data 
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As shown in Figure. 17, now LSTM will update the old cell state Ctt-1, into the new cell 

state Ct. It multiply the old state by ft , forgetting the things it decided to forget earlier. Then 

it adds it∗Ct. This is the new candidate value, scaled by LSTM’s decision to update each 

state value.  

 

 

 

 

Figure. 18 LSTM Output Gate 

 

Finally the output value has to be computed, which is done by multiplying ot with the tanh 

of the result of the previous step, which yields to ht=ot∗tanh(Ct) and  

ot=σ∗(Wo [ht-1,xt]+bo). Finally, it decides which information should be output to the layer 

above with an output gate.  

In the LSTM cell, each parameter at moment t can be defined as follows:  

  ft  = σ (Wf [ht-1 , xt ] + bf) 

  it  = σ (Wi [ht-1 , xt ] + bi) 

             Ct = tanh (Wc [ht-1, xt ] + bc) 

  Ct  = ft * Ct-1 + it * Ct 
  ot  =  σ (Wo [ht-1 , xt ] + bo) 

  ht  = ot  * tanh (Ct)  
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Figure. 19 The unfolded structure of one-layer baseline LSTM 

 

In Figure 19, We define the input set as {x0,x1,…,xt,xt+1,...} and the output set as 

{y0,y1,…,yt,yt+1,...} and hidden layers as {h0,h1,…,ht,ht+1,...}. Then, U, W, V denote weight 

metrics from the input layer to the hidden layer, from the hidden layer to the hidden layer, 

and from the hidden layer to the output layer respectively. Baseline LSTM structure 

operating through the time axis, from left to right. The transfer process of the network can 

be described as follows: the input tensor is transformed along with the tensor of the hidden 

layer (at the last stage), to the hidden layer by a matrix transformation. Then, the output of 

the hidden layer passes through an activation function to the final value of the output layer. 

Formally, outputs of the hidden layer and output layer can be defined as follows:  
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                 g(Uxi + bi
h)              where I =  0 

   hi =        g(Uxi  + Whi-1 + bi
h) where i  = 1,2,… 

   yi =      g(Vhi   + bi
y)              where i  = 0,1,...             

               

4.3.3 Bidirectional LSTM 

Baseline LSTM cells predict the current status based only on former information. It is clear 

that some important information may not be captured properly by the cell if it runs in only 

one direction. Bidirectional LSTM have been successfully applied for emotion recognition 

from low level frame-wise audio features which requires modeling of long range context 

along both input directions [52]. 

 

Figure. 20 The structure of single layer bidirectional LSTM 
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As shown in Figure. 20, the bidirectional layer gets information from vertical direction 

(lower layer) and horizontal direction (past and future) from two separate hidden layers, 

and finally outputs the processed information for the upper layer. There are forward 

sequences h⃗ from left to right with green arrows and backward sequences ←h from right 

to left with red arrows in the hidden layer. For the moment, t (0, 1, 2...) the hidden layer 

and the output layer can be defined as followed. 

  (→) ht   = g(Uh xt + Wh ht-1 + bh) 

  (←) ht   = g(Uh xt + Wh ht-1 + bh) 

          yt     = g(Vhht 
→ + Vh ht

←  + by )  

4.3.4 Residual LSTM 

The Microsoft Research Asia (MSRA) team built a 152-layer network, On the ImageNet 

dataset the team evaluate residual nets with a depth of up to 152 layers—8× deeper than 

VGG nets [54] but still having lower complexity. This result won the 1st place on the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2015 classification task. 

The depth of representations is of central importance for many visual recognition tasks. 

 

A residual network [54] provides an identity mapping by shortcut paths. Since the identity 

mapping is always on, function output only needs to learn residual mapping. Formulation 

of this relation can be expressed as:  

y = F(x; W) + x   

where y is an output layer, x is an input layer and F(x; W) is a function with an internal 

parameter W. Without a shortcut path, F(x; W) should represent y from input x, but with 

an identity mapping x, F(x; W) only needs to learn residual mapping, y − x. As layers are 

stacked up, if no new residual mapping is needed, a network can bypass identity mappings 

without training, which could greatly simplify training of a deep network. 
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As the network deepens, the research emphasis shifts on how to overcome the obstruction 

of information and gradient transmission. The MSRA uses residual networks with the main 

idea that it is easier to optimize the residual mapping than to optimize the original, 

unreferenced mapping. An important advantage of residual networks is that they are much 

easier to train because the gradients can be passed through the layers more directly 

with the addition operator that enables them to bypass some layers that would have 

otherwise been restrictive. This enables both better training and a deeper network, because 

residual connections do not impede gradients and still contribute to refining the output of 

a highway layer composed of such residual connections [55].  

 

Skip connections made the training of very deep networks possible and have become an 

indispensable component in a variety of neural architectures. The difficulty of training deep 

networks is partly due to the singularities caused by the non-identifiability of the model. 

Several such singularities have been identified in previous works: (1) overlap singularities 

caused by the permutation symmetry of nodes in a given layer, (2) elimination singularities 

corresponding to the elimination, i.e. consistent deactivation, of nodes, (3) singularities 

generated by the linear dependence of the nodes. These singularities cause degenerate 

manifolds in the loss landscape that slow down learning. We argue that skip connections 

eliminate these singularities by breaking the permutation symmetry of nodes, by reducing 

the possibility of node elimination and by making the nodes less linearly dependent. 

Moreover, for typical initializations, skip connections move the network away from the 

“ghosts” of these singularities and sculpt the landscape around them to alleviate the 

learning slow-down. These hypotheses are supported by evidence from simplified models, 

as well as from experiments with deep networks trained on real-world datasets. [56] 
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Figure. 21 The structure of single layer residual LSTM 

The lower information can transmit to upper layer directly through a highway, which 

increases the freedom of the information flowing. The highway structure containing skip 

connections can connect many supplementary n (n=0, 1, 2…) layers in height before the 

bottleneck. When n equals 0, there is no residual connection: it becomes like the baseline 

deep-stacked LSTMs layers. The output of the hidden layer i (i=1,2,...L)can be defined as 

follows: 

  h1 = σ(W1x + b1)             where i = 1 

  hi  = σ(Wi hi-1 + bi) + hi -1  where i = 2,3,…,L-1 

  y =  σ(Wy hi-1 + by) + hi -1      where i = L 
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During the code implementation, indexing in the configuration file starts at one rather than 

zero because we included the count of the first layer that acts as a basis before the residual 

cells. The same counting rule applies for indicating how many blocks of residual highway 

layers are stacked one on top of the other.  

 

4.3.5 Deep Residual Bidirectional LSTM 

 

The deep bidirectional LSTM (BDLSTM) architectures are networks with several 

bidirectional stacked LSTM hidden layers, in which the output of a LSTM hidden layer 

will be fed as the input into the subsequent LSTM hidden layer. This stacked layers 

mechanism enhances the power of neural networks [57]. Previous research [58] has shown 

that, the BDLSTM takes the spatial time series data as the input and predict future speed 

values for one time-step. The BDLSTM is also capable of predicting values for multiple 

future time steps based on historical data. When feeding the spatial-temporal information 

of the traffic network to the BDLSTMs, both the spatial correlation of the speeds in 

different locations of the traffic network and the temporal dependencies of the speed values 

can be captured during the feature learning process. In this regard, the BDLSTMs are very 

suitable for being the first layer of a model to learn more useful information from spatial 

time series data. When predicting future speed values, the top layer of the architecture only 

needs to utilize learned features, namely the outputs from lower layers, calculates 

iteratively along the forward direction and generates the predicted values. But as 

complexity and volume of data grows the model may not work due to the obstruction of 

information and gradient transmission as discussed in residual LSTM section. In general, 

gradient vanishing is a widespread problem for deep networks.  Then there is a need for a 

hybrid LSTM model which would work on those cases. The residual, bidirectional, and 

stacked layers (hence, the name “Deep Residual Bidirectional LSTM” (RBDLSTM)) [59] 

help counter this problem, because some bottom layers would otherwise be too hard to 

optimize when using backpropagation.  
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The RBDLSTM layer contains a BDLSTM layer as the first feature-learning layer and a 

LSTM layer as the last layer. For sake of making full use of the input data and learning 

complex and comprehensive features, the RBDLSTM includes one or more middle 

BDLSTM layers along with residual LSTM layers. These architectures can take formation 

of 2 x 2 layers, 3 x 3 layers or 4 x 4 layers depending on the complexity nature of the issues 

along with learning rate, where there would be n residual layers which contains each n 

bidirectional  hidden layers. Combined with batch normalization on the top of each residual 

layer, residual connections act as shortcut for gradients. It prevents restrictions in the 

hidden layer feature space from being too complex and avoids outlier values at test time, 

against overfitting. 

  

In Figure 22, the information flows bidirectional fashion in the horizontal direction 

(temporal dimension) and unidirectional fashion in the vertical direction (depth 

dimension). With the exception of the input and output layers, there are 2 hidden layers 

which have residual connection inside (hence, called “residual layer”). Moreover, each 

residual layer contains 2 bidirectional layers. The network in Figure. 22 demonstrated  

2 x 2 architecture, which can also be thought of as 8 LSTM cells in sum working as a 

network. In our network, the activity function is unified with ReLU, because it always 

outperforms with deep networks to counter gradient vanishing. Although the output is a 

tensor for a given time window, the time axis has been crunched by the neural network. 

That is, we need only the last element of the output and can discard the others. Thus, only 

the gradient from the prediction at the last time step is applied. This also causes a LSTM 

cell to be unnecessary: the uppermost backward LSTM in the bidirectional pass. Hopefully, 

this is not of great concern because TensorFlow should evaluate what to compute and what 

not to compute. Additionally, the training dataset should be shuffled during the training 

process. The state of the neural network is reset at each new window for each new 

prediction. 
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Figure. 22 The structure of 2 x 2 residual bidirectional LSTM 
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Figure. 23 The residual bidirectional LSTM components 

 

The residual bidirectional LSTM is the hybrid of all the above layers, shown below the 

output of hidden layer and output layer in a series as follows: 

  

Stacked LSTM without residual connections: 

 

Let LSTMi and LSTMi+1 be the ith and (i+1)th LSTM layers in a stack, whose parameters 

are Wi and Wi+1 respectively. At the tth time step, for the stacked LSTM without residual 

connections, we have:  

  ct
i , mt

i = LSTMi (ct-1
i  , mt-1

i , xt
i-1 ; Wi )  

         xt
i = mt

i  ,  

                ct
i+1 ,mt

i+1 = LSTMi+1(ct-1
i+1  , mt-1

i+1 , xt
i ; Wi+1 )   

where xt
i  is the input to LSTMi  at time step t, and mt

i  and ct
i are the hidden states and 

memory states of LSTMi  at time step t, respectively. 
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Stacked LSTM with residual connections: 

 

With residual connections between LSTMi and LSTMi+1, the above equations become: 

  ct
i , mt

i = LSTMi (ct-1
i  , mt-1

i , xt
i-1 ; Wi )  

         xt
i = mt

i +  xt
i-1 ,  

                ct
i+1 ,mt

i+1 = LSTMi+1(ct-1
i+1  , mt-1

i+1 , xt
i ; Wi+1 )   

 

Residual connections greatly improve the gradient flow in the backward pass, which allows 

us to train very deep networks.  

 

Stacked LSTM with residual bidirectional connections: 

 

In an LSTM stack with residual connections there are two accumulators: ct
i along the time 

axis and xt
i along the depth axis. In theory, both of the accumulators are unbounded, but in 

practice, we noticed their values remain quite small. For inference, we explicitly constrain 

the values of these accumulators to be within [-δ, δ] to guarantee a certain range that can 

be used for calculation purpose later. The forward computation of an LSTM stack with 

residual connections is modified to the following:  

 

  ct
'i , mt

i = LSTMi (ct-1
i  , mt-1

i , xt
i-1 ; Wi )  

         ct
'i = max(−δ, min(δ, ct

'i ))  

         xt
'i = mt

i +  xt
i-1 ,  

          xt
i = max(−δ, min(δ, xt

'i))  

                ct
'i+1 ,mt

i+1 = LSTMi+1(ct-1
i+1  , mt-1

i+1 , xt
i ; Wi+1 )  

        ct
i+1 = max(−δ, min(δ, ct

'i+1)) 

 

It can be quantized further with effective quantization methods by reducing bit-widths of 

weights, activations and gradients of a neural network which can shrink its storage size and 



 
 
 

63 
 

memory usage, and also allow for faster training and inference by exploiting bitwise 

operations.[60]. This area is not researched in this thesis. 
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CHAPTER V  

TESTBED SETUP 

 

In this section, we are going to set up the hardware for this research and run the 

simulation programs to verify that the platform is ready for the research. This introduces 

distributed machine learning where we need cluster of machines, which are either 

connected physically with each other or connected by the web networks. Here we built a 

Raspberry Pi cluster which consists of 16 Raspberry Pi 3 B+ models connected together 

by a switch hub where the switch is connected to LAN of the research lab. The next 

platfom we built a NVIDIA GPU cluster which consists of 3 GPUs Tesla K40c, Quadro 

P5000 and Quadro K620 on top of a multicore CPU  with 32 GB RAM and 2 TB SSD 

with 10 TB HDD space. We presented every details of set up with simulation results in 

below section. 

5.1 NVIDIA GPU Test Bed Setup 

We use Ubuntu 18.04 LTS 64-bit version for our development environments to perform 

the experiments. We use one multicore CPU machine with enough memory and disk 

space to support 3 GPUs named Tesla K40c, Quadro P5000 and Quadro K620. In this 

experiment, we have used NVIDIA Maximus formation by using the computational 

power of NVIDIA Tesla GPU and visualization power of NVIDIA Quadro GPU. This is 

the most efficient formation recommended by NVIDIA for deep learning peforamnce.  

The cluster of this GPUs is connected by 100 Mbps LAN. Hardware configuration of the 

machine along with NVIDIA GPUs are listed in Table 2, 3 and the details workstation set 
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up is described in APPENDIX A. 

 

Processor Dual Intel Xeon E5-2609 v4, 8-Core, 1.7 

Ghz, 20MB L3 Cache, 85 Watts 

Memory 32GB DDR4- 2400MHz (4 x 8GB) 

Motherboard Asus Z10PE-D16 WS Intel Xeon 

Power Supply 750 Watt EGVA SuperNOVA, 80Plus 

Bronze Certified 

Hard Drive 1 2TB Samsung 960 Pro PCIe 3.0 SSD 

Hard Drive 2 2 x 4 TB 7200rpm SATA 600 with 64MB 

Cache 

GPUs Tesla K40c, Quadro P5000, Quadro K620 

 

 Table. 2 Hardware configuration of CPU 

Device 0:   Quadro P5000 

CUDA Driver Version / Runtime Version 10.0 / 10.0 

CUDA Computation Capability Version  6.1 

Total amount of global memory 16279 MBytes (17069309952 bytes) 

Total CUDA Cores 2560 

Multiprocessors (20) Multiprocessors, (128) CUDA Cores 

GPU Max Clock rate 1734 MHz (1.73 GHz) 

Memory Clock rate 4513 Mhz 
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Memory Bus Width 256-bit 

Maximum Texture Dimension Size (x,y,z)  1D=(131072), 2D=(131072, 65536), 

3D=(16384, 16384, 16384) 

Device 1: Tesla K40c 

CUDA Driver Version / Runtime Version 10.0 / 10.0 

Total amount of global memory 11441 MBytes (11996954624 bytes) 

Total CUDA Cores 2880 

Multiprocessors (15) Multiprocessors, (192) CUDA Cores 

GPU Max Clock rate 745 MHz (0.75 GHz) 

Memory Clock rate 3004 Mhz 

Memory Bus Width 384-bit 

Maximum Texture Dimension Size (x,y,z)  1D=(65536), 2D=(65536, 65536), 

3D=(4096, 4096, 4096) 

Device 2: Quadro K620 

CUDA Driver Version / Runtime Version 10.0 / 10.0 

Total amount of global memory 2000 MBytes (2096955392 bytes) 

Total CUDA Cores 384 

Multiprocessors ( 3) Multiprocessors, (128) CUDA Cores 

GPU Max Clock rate 1124 MHz (1.12 GHz) 

Memory Clock rate 900 Mhz 

Memory Bus Width 128-bit 

Maximum Texture Dimension Size (x,y,z)  1D=(65536), 2D=(65536, 65536), 
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3D=(4096, 4096, 4096) 

Warp size (same for all) 32 

 

Table. 3 Hardware configuration of GPUs 

 

 

As shown in Table. 3, the machine is installed with CUDA 10.0.130 along with 

compatible cuDNN 7.5 for the TensorFlow and PyTorch. 

The details process of installation of CUDA and cuDNN are mentioned in APPENDIX – 

A. Here we have mentioned the verification process after installation. 

Recommended Actions for Installation Verifications 

1. Check the .bashrc after reboot. 

2. Verify the installed driver version. If driver is installed correctly it will be loaded by 

the below command. 

$ cat /proc/driver/nvidia/version 

 

  Figure.24 NVIDIA Driver Version 

3. Verify the CUDA Toolkit Version by the below command. 

$ nvcc -V 
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Figure.25 CUDA Toolkit Version 

4. Compile the CUDA Examples 

    In order to modify, compile and run samples it must be installed with write permission.   

Please run the script which is already available in the CUDA installed directory. 

cuda-install-samples-10.0.sh ~  

which will copy the samples to the home directory. Once the copying is finished please 

run the below command to compile the samples. 

cd ~/NVIDIA_CUDA-10.0_Samples/5_Simulations/nbody 

make ./nbody 

5. Run the Binaries 

After compilation, run the deviceQuery under Samples folder, by below command. 

./deviceQuery 

If the CUDA software is installed and configured correctly the output of the deviceQuery 

would show pass statement as shown below. 

 deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.0, CUDA Runtime 

Version = 10.0, NumDevs = 3 

Result = PASS 

Run the bandwidthTest for verification by below command. 

./p2pBandwidthLatencyTest 



 
 
 

69 
 

If the CUDA software is able to connect to other GPU drivers then the below matrix will 

come in result page which validates the successful installation of CUDA. 

 

P2P=Enabled Latency (P2P Writes) Matrix (us) 

   GPU     0      1      2  

     0   1.27  15.42  14.41  

     1  14.54   4.28  16.47  

     2  13.74  16.19   3.75  

 

   CPU     0      1      2  

     0   6.07  14.02  13.95  

     1  14.14   5.99  13.97  

     2  13.95  13.80   6.10  

Test passed! 

 

6. Verify the cuDNN validation test after successful installation of cuDNN. 

To verify that cuDNN is running properly, compile the mnistCUDNN sample located in 

the /usr/src/cudnn_samples_v7 directory in the debian file installation folder. 

Steps: 

1. Copy the cuDNN sample to a writable path. 

$cp -r /usr/src/cudnn_samples_v7/ $HOME 

2. Go to the writable path. 
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$ cd $HOME/cudnn_samples_v7/mnistCUDNN 

3. Compile the mnistCUDNN sample 

$make clean && make 

4.  If face any issues, open the file /usr/include/cudnn.h & change below details & save it. 

#include "driver_types.h"   →   #include <driver_types.h> 

5. Run the mnistCUDNN sample. 

$ ./mnistCUDNN 

6.  If cuDNN is properly installed and running on you Linux machine you will see the 

similar message as above. 

Test passed! 

The above complete test results files are provided in the APPENDIX -A. 

After above installation now the machine is compatible for running deep learning models 

but still clustering is ready to set.  

There are basically two options how to do multi-GPU programming. First option to do it 

in CUDA and have a single thread and manage the GPUs directly by setting the current 

device and by declaring and assigning a dedicated memory-stream to each GPU or the 

other options is to use CUDA_Aware_MPI where a single thread is spawned for each 

GPU and all communication and synchronization is handled by MPI. 

We have choose to go by the first option where the clustering is done based on 

cudaSetDevice query.   
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Figure.26 GPU Memory Array 

The result of the NVIDIA Maximus cluster formation is shown below. 

     < multiple host threads can use ::cudaSetDevice() with device simultaneously > 

> Peer access from Quadro P5000 (GPU0) -> Tesla K40c (GPU1) : Yes 

> Peer access from Quadro P5000 (GPU0) -> Quadro K620 (GPU2) : Yes 

> Peer access from Tesla K40c (GPU1) -> Quadro P5000 (GPU0) : Yes 

> Peer access from Tesla K40c (GPU1) -> Quadro K620 (GPU2) : Yes 

> Peer access from Quadro K620 (GPU2) -> Quadro P5000 (GPU0) : Yes 

> Peer access from Quadro K620 (GPU2) -> Tesla K40c (GPU1) : Yes 

We have implemented the Synchronous All-reduce approach which is the default 

behavior of the distributed TensorFlow, MirroredStrategy API.  

Both of these examples implement the All-reduce approach, however they can be easily 

extended to other approaches. Here 3 GPUs are working as actors to mirror the task 

which is taken care by TensorFlow in Figure. 27. 
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Figure.27 Distributed TensorFlow API 

5.2 Cluster of Raspberry Pis Setup 

We have used Raspberry Pi 3 Model B+ in this experiment. There is a perfect reason to 

use raspberry pi in this research. 

The raspberry pi board comprises a program memory (RAM), processor, graphics chip, 

CPU, GPU, Ethernet port, GPIO pins, Xbee socket, UART, power source connector and 

various other interfaces for other external devices. We have added a 32 GB flash memory 

SD card which could be used as storage in each pi. So that raspberry pi board will boot 

from this SD card similarly as a PC boots up into windows from its hard disk. This tiny 

computer having all the qualities with very cost effective price, a perfect candidate to 

build large clusters for research purpose. 

Hardware configuration of Raspberry Pi is listed in the Table. 4. 

There are 16 Pi’s used to make this cluster. The Raspbian Stretch Kernel Version 4.14 is 

installed in each Pi. TensorFlow 1.8.0 the .whl file version is installed in each Pi. To 

create the sharing folder between the Pis NFS server and client model is implemented as 

it is supported by Linux terminal. 
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Processor Broadcom BCM2837B0, Cortex-A53, 

 64-bit SoC @ 1.4GHz 

Memory 1GB LPDDR2 SDRAM 

Hard Drive 1 Samsung 32 GB Flash Drive 

Power Supply 5V/2.5A DC via micro USB connector 

Integrated Wi-Fi 2.4GHz and 5GHz 

Ethernet speed 300Mbps 

 

Table. 4 Hardware configuration of Raspberry Pi 3 Model B+ 

The details of creating the sharing server and client structure is described below. 

Step-1: 

Create NFS server in one of the pi which is known as master pi. Before setting up the 

NFS there is some prerequisites which is good to follow.  

Login to the Pi configuration management file by the below command. 

sudo raspi-config 

1. Update the pi software. 

2. Rename each pi from the default name to rpi# as per the nodes going to be used in the 

cluster. You can do that from the configuration file itself and restart the pi. 

3. Enable the hostname in each pi. 

4. Change the password of default to your own convenient one. 

5. Change the assigned memory for GPU to minimum. 
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6. Change the assigned memory for CPU to maximum. 

7. In raspi-config, change (3. Boot Options > B2 Wait for Network at Boot) from “No” to 

“Yes”. This will ensure that networking is available before the fstab file mounts the NFS 

client. 

8. In raspi-config, enable the ssh mode. 

Step-2: (NFS Server) 

Install the NFS server in the master node by the below command. 

sudo apt-get install nfs-common nfs-server -y 

sudo mkdir /home/pi/Desktop/nfsserver 

sudo chmod -R 777 /home/pi/Desktop/nfsserver 

This will create a server folder named nfsserver in the master pi. 

Step-3: 

Validate the NFS Version by the below command. 

rpcinfo -u localhost nfs 

Step-4: 

Add the nfsserver folder to the localhost so that when other Pi add something to the 

folder it will be automatically updated by the server. Please use below commands. 

/home/pi/Desktop/nfsserver   192.168.1.1/26(rw,sync,no_subtree_check) 

where nfsserver folder will read,write,sync with no sub tree check. 

Step -5: (NFS Client) 

Install the NFS client in each of the Raspberry Pi node so that we will communicate each 

other by the RPC protocol which NFS uses internally to communicate. 
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1. Install the NFS client by the command. 

sudo apt-get install nfs-common -y 

2. Make a client directory in the Pi. 

sudo mkdir -p /home/pi/Desktop/nfs 

3. Give permission to the directory. 

sudo chown -R pi:pi /home/pi/Desktop/nfs 

4. Mount the directory to the NFS server. 

sudo mount 192.168.1.26:/home/pi/De sktop/nfsserver  /home/pi/Desktop/nfs 

sudo nano /etc/fstab 192.168.1.26:/home/pi/Desktop/nfsserver  /home/pi/Desktop/nfs 

nfs rw 0 0 

5. Verify the mount. 

nfsstat -m 

Step-6: 

Restart the NFS client service so that the server will recognize the client. 

sudo /etc/init.d/nfs-common restart 

Step-7: 

Once NFS client is installed in all the Raspberry Pi’s restart the NFS server to verify that 

it is connecting to all the clinets. 

sudo /etc/init.d/nfs-kernel-server restart  

The below snapshot shows after NFS client server model successfully installed in all the 

machines. 
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Figure.28 Raspberry Pis NFS connection 

The directory is always available to all the Raspberry Pi workers along with master which 

having both client and server, the status of NFS is shown below in the snapshot. 

Figure.29 NFS Status 

Issues on NFS Setup: 

NFS server on default only allows 15 Raspberry Pi nodes as client to connect to the 

server. This is the default NFS property. To increase the port please follow the below 

steps. 

Step-1: 

Go to the nfs-kernel-server file in command prompt and change to larger number as 

required. 
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sudo nano /etc/default/nfs-kernel-server 

RPCNFSDCOUNT = 16 

RPCMOUNTDOPTS= " --manage-gids --no-nfs-version 3" 

Step-2: 

Change the following things in nfs-utils file. 

sudo nano /run/sysconfig/nfs-utils  

RPCNFSDARGS = “16” 

Step-3: 

Create a directory named “sunrpc.conf” in the below location and add details as 

provided below. 

1. Go to the directory: /etc/modprobe.d 

2. Create a file named: sunrpc.conf 

3. Add the contents in the above file to allow the clients # in the NFS server: 

options sunrpc tcp_slot_table_entries=128 

options sunrpc tcp_max_slot_table_entries=128 

5.3 Simulation using Raspberry Pis Cluster 

The simulation is done with 16 Raspberry Pi cluster where 15 nodes work as worker 

nodes and one works as master node as well worker node.  In this cluster each task is 

associated with a server. This simulation is the Monte Carlo simulation which use 16 

Raspberry Pi cluster distributed TensorFlow environment to give the result of the value 

of pi.  

The program having two parts, one is server program server.py which is running in the 
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NFS server where each client having access and the other is the client part, client.py 

which calculates the value of Pi by using a Monte Carlo method. The program generates 

random points between (-1, -1) to (1, 1) in a circle of radius 1 inscribed in a square.  

The source code of the Program is given in APPENDIX-E. 

Distributed TensorFlow works a bit like a server-client model. The idea is that you create 

a whole bunch of workers that will perform the heavy lifting. You then create a session 

on one of those workers, and it will compute the graph, possibly distributing parts of it to 

other clusters on the server. In order to do this, the main worker or the master, needs to 

know about the other workers. This is done via the creation of a ClusterSpec as shown in 

Figure. 30, which you need to pass to all workers. A ClusterSpec is built using a 

dictionary, where the key is a “job name”, and each job contains many workers. 

The code is taken from the simulation program where each Raspberry Pi node ip is 

entitled in the taskList and cluster creates a working cluster by using API 

tf.train.ClusterSpec where each job is specified as a sparse mapping from task indices to 

network addresses.  
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Figure.30 TensorFlow Cluster API 

In the Figure. 31, the TensorFlow API tf.device is used which is used to create a device 

context such that all the operations within that context will have the same device 

assignment instead of automatically selecting available devices by the program to 

participate in the computational process. It allows the user to select an user specified 

device for the operation. 

 

Figure. 31 TensorFlow Device API 
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TensorFlow uses a dataflow graph to represent your computation in terms of the 

dependencies between individual operations. This leads to a low-level programming 

model in which you first define the dataflow graph, then create a TensorFlow session to 

run parts of the graph across a set of local and remote devices. As shown in Figure. 32, 

TensorFlow uses tf.Session API to create a session object which encapsulates the 

environment in which Operation objects are executed, and Tensor objects are evaluated. 

In simple terms, the session allocates memory to store the current value of the variable. 

tf.global_variables_initializer() initializes all the variables of the TensorFlow before 

using it in the operations. 

Figure.32 TensorFlow Session API 

In Figure. 33, the TensorFlow API tf.train.Server()  is used as an in-process TensorFlow 

server, for use in distributed training. A tf.train.Server instance encapsulates a set of 

devices and a tf.Session target that can participate in distributed training. A server 

belongs to a cluster (specified by a tf.train.ClusterSpec), and corresponds to a particular 

task in a named job. The server can communicate with any other server in the same 

cluster.

 

Figure. 33 TensorFlow Server API 
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Result 

Sample Size  Time 1  Time 2  Time 4  Time 8 

Time 

16 

10,000,000  1.495  1.18  1.32  1.961  2.34 

20,000,000  2.594  1.704  1.572  2.087  2.48 

30,000,000  3.673  2.284  1.848  2.299  2.57 

40,000,000  4.758  2.818  2.09  2.35  2.63 

50,000,000  6.561  3.373  2.391  2.48  2.79 

60,000,000  7.713  3.91  2.648  2.628  2.593 

70,000,000  N/A  4.451  2.923  2.782  2.421 

80,000,000  N/A  4.998  3.218  2.953  2.561 

90,000,000  N/A  5.678  3.482  3.147  2.842 

100,000,00

0 
N/A 

6.103  3.741  3.234  2.611 

Table. 5 Raspberry Pi Cluster Monte Carlo Simulation 

As the cluster size increases, the program is computing faster for larger sample sizes but 

slower for smaller sample sizes. For example, for sample size 100 million, the size 8 

cluster is faster than the size 2 cluster (3.234s vs 6.103s). However, for sample size 10 

million, the size 2 cluster is faster than the size 8 cluster (1.180s vs. 1.961s). The slow 

down for smaller sample sizes may due to overhead for the tasks to communicate with 

each other. 
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Figure. 34 Pi Cluster Execution Graph 

5.4 Notes on TensorFlow Setup 

The simulation program using TensorFlow built on the distributed TensorFlow APIs 

where GPU cluster is used. We have going to discuss import APIs used in this research 

work. 

 

 

Figure. 35 TensorFlow GPU Growth API 

 

By default, TensorFlow requests nearly all of the GPU memory of all GPUs to avoid 

memory fragmentation (since GPU has much less memory, it is more vulnerable to 

fragmentation). To avoid this issue, we have used the API 
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config.gpu_options.allow_growth = True as shown in Figure. 35, where TensorFlow 

can grow its memory gradually when desired. In Figure. 13 it’s observed that while 

computing the 4 x 4 stacked residual bidirectional layer for dataset with 256 hidden 

layers which is the most complex iteration in our experiment it uses only one part of the 

GPU memory. 

In the Figure. 35, we have use the API allow_soft_placement= True , it would let 

TensorFlow to automatically choose an existing and supported device to run the 

operations in case the specified one doesn't exist, we have set allow_soft_placement to 

True in the configuration option when creating the session. With this API, our program is 

compatible to run in machines without having GPU clusters without giving any errors. 

StreamExecutor is a unified wrapper around the CUDA and OpenCL host-side 

programming models (runtimes). It lets host code target either CUDA or OpenCL devices 

with identically-functioning data-parallel kernels. StreamExecutor is currently used as the 

runtime for the vast majority of Google's internal GPGPU applications, and a snapshot of 

it is included in the open-source TensorFlow project, where it serves as the GPGPU 

runtime. As shown in Figure. 36 and 37, it inspects the capabilities of a GPU-like device 

at runtime and manages multiple devices.  

Figure. 36 GPU StreamExecutor  

Figure. 37 GPU Device Selection 
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Figure. 38 Distributed TF Multi GPU 

As shown in Figure. 38, for distributed TensorFlow we have used the API, 

tf.contrib.distribute.MirroredStrategy in our program. This strategy uses one replica 

per device and sync replication for its multi-GPU version. When cluster_spec is given by 

the configure method, it turns into the multi-worker version that works on multiple 

workers with in-graph replication. Note: configure will be called by higher-level APIs if 

running in distributed environment. 

In-graph replication: the client creates a single tf.Graph that specifies tasks for devices 

on all workers. The client then creates a client session which talks to the master service of 

a worker. Then the master will partition the graph and distribute the work to all 

participating workers. 

Worker: A worker is a TensorFlow task that usually maps to one physical machine. We 

will have multiple workers with different task index. They all do similar things except for 

one worker checkpointing model variables, writing summaries, etc. in addition to its 

ordinary work. 

The multi-worker version of this class maps one replica to one device on a worker. It 

mirrors all model variables on all replicas. For example, in our program we have two 

workers and each worker having single GPUs, it creates 2 copies of the model variables 

on these 2 GPUs. Then like in MirroredStrategy, each replica performs their computation 

with their own copy of variables unless in cross-replica model where variable or tensor 

reduction happens. 
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5.5 Notes on using PyTorch Setup 

In PyTorch program we have used the API, import torch.distributed as dist.  

PyTorch distributed currently only supports Linux. By default, the Gloo and NCCL 

backends are built and included in PyTorch distributed (NCCL only when building with 

CUDA). As Rule of thumb, we use the NCCL backend for distributed GPU training using 

CUDA.  

 

Figure. 39 PyTorch Distributed API 

In Figure. 39, The torch.distributed package provides PyTorch support and 

communication primitives for multiprocess parallelism across several computation nodes 

running on one or more machines. The class 

torch.nn.parallel.DistributedDataParallel() builds on this functionality to provide 

synchronous distributed training as a wrapper around any PyTorch model. This differs 

from the kinds of parallelism provided by Multiprocessing package - 

torch.multiprocessing and torch.nn.DataParallel() in that it supports multiple network-

connected machines and in that the user must explicitly launch a separate copy of the 

main training script for each process. 

 

Figure. 40 PyTorch Memory Shuffle 



 
 
 

86 
 

The task is distributed with 8 workers, and pin_memory is true so that the load of Dataset 

which is on CPU, would push it during training to the GPU, so that it can speed up the 

host to device transfer by enabling pin_memory. 

This lets the DataLoader allocate the samples in page-locked memory, which speeds-up 

the transfer. 

As our hardware is single-machine synchronous case, torch.distributed or the 

torch.nn.parallel.DistributedDataParallel() wrapper have below advantages over other 

approaches to data-parallelism. 

1. Each process maintains its own optimizer and performs a complete optimization step 

with each iteration. While this may appear redundant, since the gradients have already 

been gathered together and averaged across processes and are thus the same for every 

process, this means that no parameter broadcast step is needed, reducing time spent 

transferring tensors between nodes which decreases the execution time of the deep 

learning model iteration. 

2. Each process contains an independent Python interpreter, eliminating the extra 

interpreter overhead and “GIL-thrashing” that comes from driving several execution 

threads, model replicas, or GPUs from a single Python process. This is especially 

important for models that make heavy use of the Python runtime, including models with 

recurrent layers or many small components. As our program has recurrent LSTM layers 

with many hidden layers it gives an advantage point during deep model iterations. 
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CHAPTER VI 

IMPLEMENTATION 

 

6.1 Best Learning Rate 

   

Deep 

Layers 

Learning 

Rate 

Hidden 

Layers 

Execution 

Time 

Prediction 

Accuracy F1 Score 

3 0.01 32 0:53:25 0.18052256 0.0552101 

3 0.01 64 1:20:59 0.18052256 0.0552101 

3 0.01 128 1:48:32 0.18052256 0.0552101 

3 0.001 32 0:53:41 0.91177469 0.9116894 

3 0.001 64 1:20:42 0.8995589 0.8998715 

3 0.001 128 2:44:04 0.91923988 0.9191246 

3 0.0001 32 0:53:39 0.89582628 0.8954641 

3 0.0001 64 1:20:57 0.87580591 0.8761988 

3 0.0001 128 3:58:56 0.89752293 0.8974544 

     Table. 6 Best Learning Rate 
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Figure. 41 Best Learning Rate 

In the Figure 41. We have shown the prediction accuracy along with F1 score based on 3 

different learning rates which are 0.01, 0.001 and 0.001. The F1 score is calculated based 

on confusion matrix which is an important parameter to verify the calculated accuracy. 

The learning rate 0.01 has shown the accuracy of 0.18 from Table. 2, which is bad so it 

can’t be accepted as learning rate for the research. The learning rate 0.0001 has shown 

the accuracy in between 85% - 90 % which is okay but when the execution time is 

observed it’s very high, this time is almost double as compared to 0.01 learning rate so it 

is discarded. The learning rate 0.001 has given the accuracy 0.9192 from Table. 6, which 

is considered the best accuracy from 3 learning rates along with best execution time for 

deep learning iterations.  
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6.2 CPU Execution Time between Layers 

 

 

Figure. 42 Big Machine CPU Details 

 

Deep Layers Residual 

Layers 

Hidden Layers 

    32 64 128 256 

    Execution 

Time 

Execution 

Time 

Execution 

Time 

Execution 

Time 

2 x 2 Layers 1:42:21 2:09:22 3:04:51 5:49:40 

3 x 3 Layers 5:18:24 9:34:22 6:44:26 16:00:54 

4 x 4 Layers 8:35:14 9:14:42 11:18:50 20:50:11 

 

Table. 7 Execution rate between Layers in CPU 
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In Table. 7  , the execution time of all the 3 layers which are 2 deep layers along with 2 

residual layers, 3 deep layers along with 3 residual layers and 4 deep layers along with 4 

residual layers  are shown which are done by the computational power of CPU. The CPU 

hardware along with internal configuration is shown in Figure 42. The CPU uses its 16 

core to do the computational analysis as shown in Figure. 50. Each layers having 4 types 

of hidden layers which are 32 layers, 64 layers, 128 layers and 256 layers which are 

having tensors to do the deep learning iterations. As shown in Figure. 43, the execution 

time increases as the hidden layers increases in the same layer as shown in the bubble 

chart. The smaller bubble means less execution time as compared to larger bubble which 

reflects longer execution time. As the layers scale increases the execution time increases 

as well. As we can see it from Figure. 44, as number of layers increases along with more 

hidden layers the execution time is the more longer than previous one. 

 

 

Figure. 43 Bubble Chart of CPU Execution 
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Figure. 44 Column Graph of CPU Execution between Layers 

6.3 GPU Execution Time between Layers 

Deep Layers Residual 

Layers 

Hidden Layers 

    32 64 128 256 

    Execution 

Time 

Execution 

Time 

Execution 

Time 

Execution 

Time 

2 x 2 Layers 2:37:24 2:37:39 2:26:23 2:40:05 

3 x 3 Layers 6:06:51 6:16:36 6:04:10 6:09:33 

4 x 4 Layers 12:11:21 11:48:27 12:19:01 12:30:06 

Table. 8 Execution rate between Layers in GPU 

 

In the Table. 8, the execution time of 2 x 2 layers, 3 x 3 layers and 4 x 4 layers along with 

32 hidden layers, 64 hidden layers, 128 hidden layers and 256 hidden layers are shown 

which are done by the GPU cluster. 
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The graphical representation of the execution time of each layer along with hidden layers 

are shown as bubble chart in Figure. 45 and as column bar graph in Figure. 46. Here we 

found an interesting thing. The deep layers of network takes a certain amount of GPU 

execution time which is irrelevant of the number of deep layers. As shown in Figure. 46, 

the execution time of 4 x 4 layers of network is approximately same for all the 4 hidden 

layers which can be referenced from the Figure. 45 as well.  

 

 

 

Figure. 45 Bubble Chart of GPU Execution 
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Figure. 46 Column Graph of GPU Execution between Layers 
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Figure. 47 2 x 2 Layers GPU Utilization Snapshot 

From Figure. 47, 48, 49 we found that the computational power of GPU is harnessed only 

by less than 1/3rd of the single GPU from the cluster. With the 2 x 2 layers, GPU 

utilization is 18%, where with 3 x 3 layers it increased a little to 22%, then with 4 x 4 

layers it increased to 31%. The GPU architecture is working on the principle of SIMD 

vectorization. 

SIMD processing exploits data-level parallelism. Data-level parallelism means that the 

operations required to transform a set of vector elements can be performed on all 

elements of the vector at the same time. That is, a single instruction can be applied to 

multiple data elements in parallel. 
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Support for SIMD operations is pervasive in the Cell Broadband Engine. In the PPE, they 

are supported by the Vector/SIMD Multimedia Extension instruction set. In the SPEs, 

they are supported by the SPU instruction set. 

In both the PPE and SPEs, vector registers hold multiple data elements as a single vector. 

The data paths and registers supporting SIMD operations are 128 bits wide, 

corresponding to four full 32-bit words. This means that four 32-bit words can be loaded 

into a single register, and, for example, added to four other words in a different register in 

a single operation.  

The process of preparing a program for use on a vector processor is 

called vectorization or SIMDization. It can be done manually by the programmer, or it 

can be done by a compiler that does auto-vectorization. Here GPU does the auto-

vectorization process which is supported by 16 CPU core so that only 25 – 30 % 

computational power of GPU 0 is utilized where most of the CPU cores are utilizing 

100% of their power which can be referenced from Figure. 50.  
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Figure. 48 3 x 3 Layers GPU Utilization Snapshot 
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Figure. 49 4 x 4 Layers GPU Utilization Snapshot 
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Figure. 50 3 x 3 Layers CPU Utilization Snapshot 

 

 

 

 

 

 



 
 
 

99 
 

6.4 Bidirectional Vs Non-Bidirectional Execution between Layers 
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Table. 9 Bidirectional vs Non-bidirectional layers execution time 
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Figure. 51 Column Graph of Execution time between bidirectional and non-bidirectional 

In the Table. 9, execution time along with prediction accuracy is shown in 3 x 3 deep 

residual layers where one learning is by bidirectional while the other learning is by non-

bidirectional or unidirectional. When we observe the result of prediction accuracy in 

Figure. 51, with 32 layers of hidden layer unidirectional layers gave better prediction 

accuracy but as deep layers increased to 64 layers and 128 layers the bidirectional layers 

gave better prediction accuracy but on the cost of higher execution time as it’s almost 

twice the LSTM layers as compared to unidirectional LSTM. As the deep layers with 

hidden layers increased to a certain point of threshold tensors both the iterations failed to 

give the expected prediction accuracy. So from this result we found out for each 

experiment there is a high efficiency level above which it doesn’t matter to the 

architectural level.  
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6.5 Stack Bidirectional Vs Stack Non-Bidirectional Execution between 

Layers 
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Table. 10 Stack Bidirectional vs Stack Non-bidirectional execution time 
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Figure. 52 Deep Bidirectional vs Deep Non-bidirectional Execution time 

 

 

In the Table. 10, the experiment is carried out between stack layers or deep layers with 

bidirectional and non-bidirectional communications. The Figure. 52 show that, the 

prediction accuracy is better with unidirectional communication between layers with 

lesser hidden layers, as the network goes more and more with more hidden layers the 

bidirectional accuracy degrades. The bidirectional communication gives much better 

result as compared to single directional communications in 256 hidden layers which is a 

very good prediction accuracy.   
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6.6 Best Accuracy between all Layers 
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Table. 11 Best Accuracy in 3 deep layers 
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Figure. 53 Best Accuracy among all types of 3 stacked layers 

In Figure. 53, the prediction accuracy along with execution time of each 3 deep layers 

with residual layer or without residual layer, with bidirectional or without bidirectional 

layers is calculated to give an overview of better layer for this experiment. If we observe 

the 32 hidden layers, 3 x 3 bidirectional false gives the best prediction accuracy with 

good execution time, with 64 hidden layers 3 x 3 bidirectional gives better prediction 

accuracy than any of them as proved in previous section, with 128 hidden layers, 3 x 3 

non-bidirectional gives best accuracy but with higher execution time where 3 x 0 gives 

almost similar prediction accuracy with half of the execution time, with 256 hidden 3 x 0 

bidirectional layer is the clear winner as compare to others in terms of prediction 

accuracy and execution time.   
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6.7 Between Deep Residual Bidirectional between 3 x3 and 4 x4 
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Table. 12 Deep Residual 3 x3 vs 4 x 4 layers 

 

Figure. 54 Column graph of 3 x 3 vs 4 x 4 Deep Residual Layers 
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In Figure. 54, we are trying to show how deep residual bidirectional layers going to 

behave in a more complex network for this it is used all over the researches. We found 

that with our test data and higher layers of bidirectional communication the execution 

increases rapidly but the prediction accuracy dropped with giving the same test result as 3 

x 3 layers. We might need more datasets with more complex architecture to test this 

feature.  

 

6.8 Between Deep Layer vs Prediction Accuracy vs Exe Time in CPU 
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Table. 13 Execution matrix of all layers by CPU 
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Figure. 55 CPU Execution Graph for all Layers 

 

 

 

 

In the Figure. 55, we have shown the prediction accuracy along with execution time of 

different layers which are 2 x 2 layers, 3 x 3 layers and 4 x 4 layers. With 32 hidden 

layers, the 2 x 2 architecture performed better with higher prediction accuracy than other 

layers, with 64 layers we observed 2 x 2 layers performance improved with good 

prediction accuracy of 0.9246, with 128 hidden layers the 3 x 3 architecture started 

performing better than others with 0.9131 prediction accuracy, with 256 hidden layers 4 x 

4 architecture started giving better prediction accuracy than other layers which is 0.2143 

but it’s still a low prediction accuracy. The execution of 4 x 4 layer is always higher as it 

needs more hidden layers to iterate over deep learning model. This experiment concluded 

that our research data performs expectedly well with 3 x 3 architecture. We might need a 

bigger dataset to check the feasibility over 4 x 4 layer.  
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6.9 Between Deep Layer vs Prediction Accuracy vs Exe Time in GPU 
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Table. 14 Execution matrix of all layers by GPU 
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Figure. 56 GPU Execution Graph for all Layers 

 

The Figure. 56, has shown the prediction accuracy and execution time between different 

layers such as 2 x 2,  3 x 3, and 4 x 4 with 32, 64, 128 and 256 hidden layers with the 

computational power of the GPU cluster. With GPU the 4 x 4 layer started performing 

with higher prediction accuracy of 0.9077 than other layers in 32 layers hidden network, 

with 64 hidden layers the 2 x2 layer gives better prediction accuracy of 0.9338 than other 

layers, with 128 hidden layers the 2 x 2 results much better with good prediction accuracy 

of 0.9046 and outstanding execution time which is overall same as explained in previous 

section, with 256 layers of hidden network all layers failed to give an expected prediction 

accuracy but the execution improved drastically over CPU. The execution time just 

dropped to half with GPU cluster as compared to CPU.   
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6.10 Deep Layer CPU Execution 
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Table. 15 4 x 4 deep Layers CPU execution matrix 
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Figure. 57 Column Graph of 4 x 4 deep Layers CPU execution 

 

In Figure. 57, we have performed the experiment of 4 x 4 deep layers with very low 

hidden layers to higher hidden layers to check the prediction accuracy. With 8 layers of 

hidden layers, the accuracy is better as compared to other hidden layers network. As the 

layers increase over time, the prediction accuracy started to drop. In this experiment, we 

found that 16 layers and 128 layers the prediction accuracy is almost equivalent but the 

execution time difference is increased to 25% more.  
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Table. 16 3 x 3 Layer GPU vs 4 x4 Layer CPU execution matrix 

 

In Table. 16, it has shown the data of execution with 3 x 3 deep layers of GPU and 4 x 4 

layers with CPU to evaluate the beneficial power of GPU over CPU for more complex 

network with bigger dataset. We found that the prediction accuracy of 4 x 4 CPU is more 

with 32 layers, then with 64 layers the 3 x 3 GPU gives better prediction accuracy then 

CPU of 4 x 4, with 128 hidden layers the CPU performs better with higher prediction 

accuracy of 0.9043 as compared to GPU with 2 times execution time taken from GPU 

which is not good. In Figure. 58, by adding 256 layers the execution speed of 4 x 4 is 

increased to double but failed to give an expected prediction accuracy on both the CPU 

and GPU models. 

 



 
 
 

113 
 

 

Figure. 58 Column Graph of 3 x 3 GPU vs 4 x 4 CPU Execution Result 
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44 66 2 07 

 

Table.17 4 x 4 Layers CPU vs GPU Execution 

 

 

 

Figure. 59 Graph of 4 x 4 deep layers CPU vs GPU Execution 

 

In Figure. 59, we have shown the computational power of both CPU and GPU of a 

complex deep learning model with 4 x 4 architecture.  With 32 nodes of hidden layers, 

the CPU performs better with higher prediction accuracy of 0.9144, with 64 nodes of 

hidden layers the GPU is giving better result with 0.9205 with same execution of 

previous hidden layers, with 128 layers CPU performance is 0.9043 which is outstanding 

as compared to GPU which is just 0.18. When we went to 256 hidden layers, the GPU 

and CPU in 4 x 4 failed to get expected results as both gave the same prediction accuracy 

of 0.18, but the execution time of CPU is almost 100% more as compared to GPU 

execution time. So in this experiment, 64 hidden layers GPU is the selected result which 

is 92%.   

0

0.2

0.4

0.6

0.8

1

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

Prediction
Accuracy

Execution
Time

32 64 128 256

4	x	4	CPU	vs	GPU

4 x 4 CPU 4x 4 GPU



 
 
 

115 
 

6.13 Bidirectional Lower vs Stack Higher Layers 
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Table. 18 2 x 2 Bidirectional Stack Layer vs 3 x 3 Stack Layer 

 

In the Figure. 60, we have shown the 2 x 2 bidirectional layers with 3 x 3 non-

bidirectional layers which having almost same computational powers as 2 x 2 with 

bidirectional gives 8 times of complex network over single LSTM cells where 3 x 3  non-

bidirectional gives 9 times of complex network over single LSTM cell. With 32 hidden 

layers, 3 x3 layers gives better accuracy over 2 x 2 layers where 64 layers, 2 x 2 layers 

gives better result. When we consider the 128 hidden layers over 2 x 2 and 3 x 3 stacked 
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layers we found out that initial lower layers are used to learn the model and higher layers 

are used to calculate the accuracy of the model in this case 3 x 3 having more initial 

layers which gives a better learning to the model than 2 x 2 layers. In 256 layers, both the 

models failed to perform but when you see the execution time 3 x 3 layers execution time 

is very high as compared to 2 x 2 model which is almost 4 times of 2 x 2 models. So the 

conclusion we draw that with higher layers the model will learn much faster but with 

increase of complexity of hidden layers it will fail to pass the learning to the higher layers 

which takes more time as it becomes very slow to pass the information.    

 

 

 

Figure. 60 Graph of 2 x 2 Bidirectional Stack Layer vs 3 x 3 Stack Layer 
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6.14 Stack vs Hidden layer on Execution Time and Prediction Accuracy 

 

Layers Hidden Layers   Execution Time Prediction Accuracy 

2 x 2 32        1:42:21 0.922293842 

2 x 2 64        2:09:22 0.924669147 

2 x 2 128        3:04:51 0.877502561 

2 x 2 256        5:49:40 0.182219207 

4 x 4 8        7:58:20 0.918221891 

4 x 4 16        7:58:46 0.90498811 

4 x 4 32        8:35:14 0.914489329 

4 x 4 64        9:14:42 0.875805914 

 

Table. 19 2 x 2 stacked hidden layers vs 4 x 4 stacked hidden layers 

 

 

 

Figure. 61 Execution time Graph of 2 x2 vs 4x 4 stacked layers 
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In the Table 19, we have shown the matrix of 2 x 2 stack layers with higher hidden layers 

and compared with 4 x 4 stack layers with lower hidden layers which is having almost 

same computational power over single layer. We have used 2 x 2 layers with 32, 64, 128 

and 256 hidden layers and 4 x 4 layers with 8, 16, 32 and 64 hidden layers. As shown in 

Figure 61, the biggest thing with higher layers is the execution time. The execution time 

is very high with high layers with lower hidden layers. With 4 x 4 layers the execution 

time is almost doubled as compared to the 2 x 2 layers. With time efficient, 2 x 2 layers 

are the clear winners in this part of research as shown in Figure. 62. For prediction 

accuracy, the 2 x 2 stacked layers with 32, 64 hidden layers gave better prediction 

accuracy as compared to 4 x 4 stacked layers with 8, 16 layers of hidden layers. So we 

concluded that lower models with higher hidden nodes provides better test results and 

execution time as compared to higher layers with less hidden nodes.  
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Figure. 62 Execution time graph with stack layers vs hidden layers 
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6.15 PyTorch vs TensorFlow Efficiency Comparison   
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Table.20 Efficiency between PyTorch and TensorFlow 
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Figure. 63 Execution Graph between PyTorch and TensorFlow 

 

In Table. 20, it shows the experiment result of 3 deep layered network with 32, 64, 128 

and 256 hidden layers programmed using TensorFlow API and PyTorch API. 

TensorFlow and PyTorch both are very good frameworks used by machine learning 

researchers for building deep neural networks. The major difference is TensorFlow core 

APIs are built using C++ and Python is used as wrapper on core to communicate with 

data where PyTorch is built on top of Torch framework with python wrapper. The best 

way to compare two frameworks is to code something up in both of them.  

 

In Figure. 63, it displays our graphical representation of the Table. 20 data. We found out 

PyTorch is executing much faster than TensorFlow. The execution time is always lower 

than TensorFlow in all the hidden layers. The prediction accuracy is similar with 

TensorFlow. During the whole experiment, in the 128 hidden layer network PyTorch 

results marginally better prediction accuracy and less execution time than TensorFlow 

framework so PyTorch is the winner. 
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6.16 Raspberry PI Cluster vs Intel Xeon CPU Efficiency Comparison   
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Table.21 Efficiency between Raspberry Pi Cluster and Intel Xeon CPU 

 

In this section, we did another experiment where we executed our LSTM deep learning 

model with same UCI dataset but with different hardware. In the previous section, we 

used the same dataset using same hardware but with different frameworks. One hardware 

would be a 16 threads multicore Intel Xeon CPU processor with 32 GB of memory and 

another hardware is 16 Raspberry Pi nodes cluster each having 1 GB RAM working in a 

cluster fashion made by parameter server architecture. 
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 In the Table.21, we noted all our experiment results. Figure 64 is the graphical 

representation of our experimental result. We observed that in distributed machine 

learning, the accuracy of model is improved with more execution time. With 32 hidden 

layers, PI cluster give 92% accuracy in 1hour 43 minutes execution time where Intel CPU 

give 91% accuracy with 53 minutes execution time. The cluster is giving better prediction 

accuracy with high execution time than multicore Intel CPU. This is might be due to 

execution throughput with 16 PIs connecting together during the execution. With 256 

layers, the accuracy is equivalent on both the hardware which just 18% but the execution 

time of cluster is higher than single Intel Xeon CPU. So we can draw the conclusion that 

with high power GPU clustered distributed machines this could be an efficient 

performance improvement which needs further research. 

 

 

 

 

Figure.64 Execution graph between Pi Cluster vs Intel Xeon CPU 
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CHAPTER VII 

CONCLUSION 

7.1 Summary 

In this thesis, we proposed a distributed deep learning model to solve a Human Activity 

Recognition (HAR) problem. We focused on the deep learning model using 

asynchronous parameter server architecture as well synchronous all-reduce approach. For 

this purpose, we have created the Raspberry Pi cluster using 16 Raspberry Pi nodes and 

the NVIDIA GPU cluster having 3 NVIDIA GPUs where both the systems are tested 

with distributed approach by using distributed TensorFlow API and PyTorch API. To 

work on the HAR problem, we have created a Residual Bidirectional LSTM to simulate 

HAR by using this distributed system. There are several points that we tested in this 

research thesis. First we created a multilayer deep learning model with 2 x 2, 3 x 3 and 4 

x 4 architecture where stacked layers are compared with non-stacked layers, stacked 

layers are compared with residual bidirectional layers, residual bidirectional layers are 

compared with residual non-bidirectional layers. Those layers with different variations 

were executed over CPUs and GPUs to benchmark the performance. The small stacked 

layers with heavy hidden layers are compared with high stacked layers with less hidden 

layers on both CPU and GPU.    

 

 

 



 
 
 

125 
 

In this experiment, when we evaluated the execution times along with prediction 

accuracy over the multicore CPU and the GPU cluster using different programming APIs: 

TensorFlow and PyTorch. Note that the execution time of PyTorch over 3 x3 layer is 

faster than TensorFlow over the same layer. We have also tested the distributed 

TensorFlow framework in Raspberry Pi cluster to benchmark the CPU performance of 

16- node Raspberry Pi cluster, where each Pi having 1 GB RAM, all-together 16 GB 

RAM equivalent with 32 GB Octacore Intel Xeon CPU. When the result of CPU 

computation of 2 x 2 layers over the multicore CPU is compared with the Raspberry Pi 

cluster, we found that in distributed network the execution time is almost twice than the 

multicore system due to high latency and low throughput.  

 

After comparing all experiments, the result show that the implementation of distributed 

TensorFlow on the GPU cluster works much faster than on the multicore CPU for high 

number of stacked layers with multi hidden layers. But it takes approximately same time 

for less stacked layers and dense stacked layers. For lesser stacked layers, GPU 

computation is less efficient. The CPU computation gives better prediction accuracy with 

3 x 3 stacked layers but execution time is 3 times slower than the GPU cluster 

7.2 Future Work 

There will be continuous efforts on developing PyTorch and TensorFlow programming 

frameworks with different computing structures. How PyTorch will behave with the GPU 

clusters would be another interesting study. There are multiple distributed architectures 

that need to be tested. This would not only require changes in the programming structure, 

but would also need more sophisticated multi GPU cluster hardware machines. For 

achieving efficiency in terms of optimal data movement this attempt would require 

multiple GPU units physically connected to each other like Raspberry Pi cluster or 

connected over the internet where bandwidth would be another parameter to do research.  

Due to limitation of GPUs with more machines, multi machine GPU cluster could be a 
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future work. With a Network Attached Storage (NAS) server along with Raspberry Pi 

cluster would become a more effective solution for storage problems. The distributed 

deep learning is just the beginning of a new dimension of research with massive scales 

datasets from different geographical areas.   
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APPENDIX A – TESTBED ARCHITECTURE 

A.1 NVIDIA GPU MACHINE SETUP 

In this single machine cluster, there are 3 NVIDIA GPU cards used. There GPUs are 

taken from different old machines and put together in this machine for clustering purpose. 

1. NVIDIA Tesla K40c 

2. NVIDIA Quadro p5000 

3. NVIDIA K640 

Different GPUs might be installed with different drivers in different machine. Those 

should be under one driver in a single machine cluster which should support all the 

GPUs.  

The command to check if any driver already installed in your machine. 

$ ubuntu-drivers devices 

The command to show all NVIDIA drivers in your machine. 

$ lspci -v | grep NVIDIA 

Step-1 : Remove previous installations 

The command removes if any older driver already installed. 

$ sudo apt-get purge nvidia*   

The command removes CUDA installation along with drivers as well. 

$ sudo apt-get autoremove 

The command checks what NVIDIA GPU cards the machine having as shown in Figure.  

 $ sudo lshw -c display 
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Figure.65 NVIDIA GPU Cards 

 

You can see in the Figure.65, those are default “driver= nouveau” that means NVIDIA 

driver is not installed in this machine. 

 

There are 2 ways to install NVIDIA driver in machine.  

First one is to install from PPA drivers which is third party compatible with all NVIDIA 

GPUs. The Second one is installing from NVIDIA website by manually checking each 

GPU model with driver compatibility. 

The advantage of ppa is easy and it automatically keeps updating if the creator adds new 

versions. Ubuntu integrates video into kernel with dpkg. If you install directly from 

NVIDIA, you still have to manually rerun that part of install task with each kernel update 

otherwise video stops working. With PPA it’s automatic. That’s why you don’t see it in 

synaptic nor dpkg commands. 
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Step-2: Download the Driver (With NVIDIA Driver) 

https://www.nvidia.com/content/DriverDownload-

March2009/confirmation.php?url=/tesla/410.104/NVIDIA-Linux-x86_64-

410.104.run&lang=us&type=Tesla 

In the website, you need to choose the required driver for the installed GPUs in your 

machine by the below page as shown in Figure.66. 

Figure.66 NVIDIA Driver Repository 

 

As I have 3 different GPUs, Tesla K40c is compatible with NVIDIA-Linux-x86_64-

410.104. Quadro p5000 & Quadro K620 are compatible with NVIDIA-Linux-x86_64-

418.56. For all 3 GPUs, I am taking the 410.104 as base driver version. 

Step-3: Build Essential Dependencies 

1. build-essentials – For building drivers 
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2. dkms – For providing dkms support, DKMS is for packages that provide a kernel 

module in source form (or binary with a source wrapper), so they don’t have to update 

the module for every kernel rebuild. 

3. gcc-multilib – For providing 32-bit support  

4. xorg and xorg-dev – For graphic display on a workstation with GUI (If not installed) 

   Check with command: $ sudo X -version 

 

 

Figure.67 Graphics Display  

Please run the command: $ sudo apt-get install build-essential gcc-multilib dkms 

Step-4: Disable default nouveau 

Please note that nouveau drivers manual removal is required only if you are going to 

install the proprietary NVIDIA drivers. If not after NVIDIA driver installation, nouveau 

may cause blurry screens. As we have NVIDIA GPUs, we need to remove it before 

installing NVIDIA drivers. 

 

1. Please create a file. Please follow the command below. 

 $ sudo gedit /etc/modprobe.d/blacklist-nouveau.conf 

2.  Please add below contents in it 
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blacklist nouveau 

blacklist lbm-nouveau 

options nouveau modeset=0 

alias nouveau off 

alias lbm-nouveau off 

Please verify the file with contents by below command  

cat /etc/modprobe.d/blacklist-nouveau.conf 

 

 

Step-5: Update the initramfs 

It needs to update the initramfs which might be configured to load the nouveau drivers. 

The update-initramfs script manages your initramfs images on your local box. It keeps 

track of the existing initramfs archives in /boot. There are three modes of operation 

create, update or delete. You must at least specify one of those modes. 

Please run the command below. 

 $ sudo update-initramfs -u 

It will give confirmation with below line. 

update-initramfs: Generating /boot/initrd.img-4.18.0-15-generic 

Please reboot the machine to proceed further.        

Step-6: Stop Desktop Manager 
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After computer is rebooted, we need to stop the desktop manager before executing the 

runfile to install the driver. lightdm is the default manager in Ubuntu. If GNOME or KDE 

desktop environment is used, then desktop manager would be gdm or kdm. 

To find the running session in your machine please use below command. 

$ echo 'Desktop: %s\nSession: %s\n'"$XDG_CURRENT_DESKTOP" 

"$GDMSESSION" 

 

Figure.68 GDM Session  

Please run the command to stop gdm service. 

$ sudo service gdm stop 

In order to install new NVIDIA driver we need to stop the current display server. The 

easiest way to do this is to change into runlevel 3 using telinit command. After this 

command, the display server will stop, therefore make sure to save all current work 

before proceed. 

Please run the command below. 

$ sudo telinit 3 

Step-6: Install the driver 

cd $HOME 

sudo chmod +x NVIDIA-Linux-x86_64-410.104.run 

sudo ./NVIDIA-Linux-x86_64-410.104.run --dkms -s 

Step-7: Check Installation by using below command. 
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$ nvidia-smi 

As shown in Figure.68, after successful installation, it will report all CUDA capable 

devices in your system. 

 

Figure.69 NVIDIA Driver Successful Installation Snapshot 

 

 

Step -2: (Alternative of above with PPA) 

1. Add the Official NVIDIA PPA to Ubuntu and update it. 

$ sudo add-apt-repository ppa:graphics-drivers/ppa 

$ sudo apt update 
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2.  Please check with below command which driver is required to install. 

$ ubuntu-drivers devices 

Figure.70 Ubuntu Driver Display 

In Figure. 70, it clearly recommends nvidia-driver-418, but for hassle free environment, 

we have installed 410. 

3. Install the recommended NVIDIA Driver. 

$ sudo apt install nvidia-driver-410 

Step-3: Install CUDA Toolkit 

 

Pre-Installation Actions 

 

1. Please verify whether you have a CUDA capable GPU. 

$ lspci | grep -i nvidia 

2. Please verify whether you have a supported version of Linux. 

$ uname -m && cat /etc/*release 
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3. Please verify the system has gcc installed. 

$ gcc –version 

 

4. Please verify if the system has correct kernel header installed 

$ uname -r 

 

5. Please run the command to install updated kernel header. 

$ sudo apt-get install linux-headers-$(uname -r) 

 

6. Please select below link to download the CUDA as in Figure.71. 

https://developer.nvidia.com/cuda-downloads 

 

 

Figure. 71 CUDA Toolkit 

 

7. Install repository meta-data 

$ sudo dpkg -i cuda-repo-<distro>_<version>_<architecture>.deb 

8. Installing the CUDA public GPG key (Installing the local repo) 

$ sudo apt-key add /var/cuda-repo-<version>/7fa2af80.pub 

9. Update the Apt repository cache 
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$ sudo apt-get update 

10. Install CUDA 

$ sudo apt-get install cuda 

11. Set Environment path (Post Installation) 

1. Take backup of existing bashrc file. 

2. Go to the home directory. 

cd $HOME 

3. Open the .bashrc file 

sudo gedit .bashrc 

4. Add following two commands in .bashrc file. 

export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}} 

export LD_LIBRARY_PATH=/usr/local/cuda-

10.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} 

5. Save and close the .bashrc file .  

6. Restart the machine. 

Verification Action already mentioned in the Implementation section. 

 

Step-4: Install cuDNN  

 

1. Go to the cuDNN download page (need registration) and select the latest cuDNN 7.5 

version made for CUDA 10.0.  

Please use the link below. 

https://developer.nvidia.com/rdp/cudnn-download 
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2. Download all 3 .deb files: the runtime library, the developer library, and the code 

samples library for Ubuntu 18.04. 

 

3. Install them in the same order: 

 

sudo dpkg -i libcudnn7_7.5.0.56-1+cuda10.0_amd64.deb (the runtime library) 

sudo dpkg -i libcudnn7-dev_7.5.0.56-1+cuda10.0_amd64.deb (the developer library) 

sudo dpkg -i libcudnn7-doc_7.5.0.56-1+cuda10.0_amd64.deb (the code samples) 

 

4. The verification process is mentioned in the Implementation section. 

 

Step-5: Install lipcupti-dev 

1. Please use the below command. 

sudo apt-get install libcupti-dev 

 

2. Please add the below line in the bashrc file for environment setup. Use below 

command. (Please take a backup of bashrc file) 

 

echo 'export 

LD_LIBRARY_PATH=/usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH' 

>> ~/.bashrc 

 

Please follow the given link for more details. 

https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html 
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A.2 PROGRAM MACHINE SETUP 

 

The HAR program contains multiple files. The 3 important files are  

1. lstm_architecture.py 

2. Config_Dataset_HAR.py 

3. Config_Dataset_HAR.ipynb (Jupyter Notebook) 

4. download_datasets.py 

 

The “data” directory needs to be created manually with 775 access inside the 

environment which is mentioned in the Config_Dataset_HAR as path for training and 

testing data samples of HAR. The folder structure   mentioned in the Figure. 8 will 

automatically established by the Config file once it gets the data folder. The 

download_dataset.py will load the UCI repository file for the first time from website and 

put in the data directory. This file is places inside the data folder. 

 

The first section of Config_Dataset_HAR.ipynb file will set the path of data, call the 

download_datasets.py script to load the data and will create necessary directory structure 

for the program. It needs to run only once for the whole program. 

 

The second section of Config_Dataset_HAR.ipynb file on running creates 

X_train_signals_paths and X_test_signal_paths with proper folder structure. 

 

The load_X and load_y methods takes the input parameters of signal_paths and returns 

ndarray which is tensor of features of both training and testing. Basically it prepares the 

datasets for training and testing by the deep learning model.  

 

The file lstm_architecture.py contains all the different types of LSTM functions which 
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are fed by the dataset from the Config_Dataset_HAR.py file with a window of 128 

timesteps.  The input of HAR should be a time series, and the basic structure of the 

LSTM guarantees that it can preserve the characteristics on the temporal dimension. 

 

The below input parameters used for different features. 

 

self.training_epochs is the number of iterations the model will run. 

 

self.learning_rate is the parameter which decides what would be the learning rate of the 

model. 

self.n_hidden is the parameter which decides how many hidden layers will be developed 

by the model for experiment. 

self.use_bidirectionnal_cells is the parameter which decided cells will do bidirectional 

communication or not. 

 

n_layers_in_highway parameter decides how many residual layers would be there in the 

model. 

n_stacked_layers parameter decides how many deep-stacked layers would be there in 

the model. 

 

OneHotEncoder 

A one hot encoding is a representation of categorical variables as binary vectors. This 

first requires that the categorical values be mapped to integer values. Then, each integer 

value is represented as a binary vector that is all zero values except the index of the 

integer, which is marked with a 1. We have not used any API for this, we have used the 

manual process. The function one_hot(y) converts labels from dense to one hot layer.  

For example it takes [[5], [0], [3]] as input array and returns [[0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 

0, 0], [0, 0, 0, 1, 0, 0]] as output. 
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L2 Regularization 

 

We have used L2 regularization in the context of Stochastic Gradient Descent in Neural 

Network. 

Figure.72 An L2-regularized version of the cost function used in SGD of RNN 

 

Generally in Machine Learning, when we fit our model we search the solution space for 

the most fitting solution; In the context of Neural Networks, the solution space can be 

thought of as the space of all functions our network can represent. We know that the size 

of this space depends on the depth of the network and the activation functions used. We 

also know that with at least one hidden layer followed by an activation layer using a 

“squashing” function, this space is very large, and that it grows exponentially with the 

depth of the network (e.g the universal approximation theorem). 

 

When we are using Stochastic Gradient Descent (SGD) to fit our network’s parameters to 

the learning problem at hand, we take, at each iteration of the algorithm, a step in the 

solution space towards the gradient of the loss function J(θ; X, y) in respect to the 

network’s parameters θ. Since the solution space of deep neural networks is very rich, 

this method of learning might overfit to our training data. This overfitting may result in 

significant generalization error and bad performance on test data, in the context of model 

development, if no counter-measure is used. Those counter-measures are called 

regularization techniques. 

Additionally, a large network can be optimized correctly for a problem with sufficient 
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regularization, such as L2 weight decay and dropout. However, if no regularization is 

used, results trend to overfitting and bad operations on the test set. Complexity is good 

but only if countered with regularization. Too many layers and cells per layer will 

increase the computational complexity and waste computational resources. When the 

layer number and cell number reach a certain scale, the recognition accuracy will remain 

at a certain scale instead of increasing. By adding more depth, regularization is then 

needed to avoid overfitting while still improving accuracy. The L2 norm of the weights 

for weight decay is added in the loss function in our deep learning model. 

 

Our deep LSTM neural network is limited in terms of how many data points it can 

access: it has access to only 128 time steps when making its predictions. Especially when 

deepened, the next forward/backward duo will see output from the other pass “in 

advance”, because, logically, a backward pass for our bidirectional LSTM reverses the 

input and the output before the concatenation. Thus, the Bidir-LSTM has the same input 

and output shape as the baseline LSTM. But at a given time step, it has access to more 

information in advance because of the backward passes. 

  

Activation Function 

 

In our network, the activity function is unified with ReLU, because it always outperforms 

with deep networks to counter gradient vanishing. Using it’s recommended to use RELU/ 

leaky RELU as the activation function, as it is relatively robust to the vanishing/ 

exploding gradient issue (especially for networks that are not too deep). Although the 

output is a tensor for a given time window, the time axis has been crunched by the neural 

network. That is, we need only the last element of the output and can discard the others. 

Thus, only the gradient from the prediction at the last time step is applied. This also 

causes a LSTM cell to be unnecessary: the uppermost backward LSTM in the 

bidirectional pass. Hopefully, this is not of great concern because TensorFlow should 
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evaluate what to compute and what not to compute. Additionally, the training dataset 

should be shuffled during the training process. The state of the neural network is reset at 

each new window for each new prediction. In our experiment, 3 x 3 residual bidirectional 

LSTM out-performing other LSTM models with 2 x2 and 4 x 4 architecture. The 3 x 3 

could be thought of 18 LSTM cells working in a network.  

 

Adam Optimizer 

Adam is an adaptive learning rate optimization algorithm that’s been designed 

specifically for training deep neural networks. First published in 2014, Adam was 

presented at ICLR 2015 conference for deep learning practitioners. Adam is an adaptive 

learning rate method, which means, it computes individual learning rates for different 

parameters. Its name is derived from adaptive moment estimation, and the reason it’s 

called that is because Adam uses estimations of first and second moments of gradient to 

adapt the learning rate for each weight of the neural network.  

Dropout 

 

self.keep_prob_for_dropout is the parameter which specifies the dropout in the model. 

dropout is applied between each layer on the depth axis or, sometimes, just at the output, 

depending on what is specified in the configuration file, which is another hyper-

parameter. Dropout refers to the fact that parts of tensors that are output by the hidden 

layer are shut down to a zero value to a certain probability for each value in each training 

epoch, while other values scale up accordingly to keep the same geometric norm of the 

tensor’s values. The inoperative nodes can be regarded as dead nodes (or neurons) that 

are temporarily not in the network, which means that the weights and biases behind these 

dead notes temporarily neither learns nor contributes to the predictions during that 

training step for a batch. The weights are kept intact. 
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APPENDIX B – SOURCE CODE 

 

 

B.1 TensorFlow Code 

 

download_dataset.py 

 

# !wget "https://archive.ics.uci.edu/ml/machine-learning-databases/00240/UCI HAR 

Dataset.zip" 

# !wget "https://archive.ics.uci.edu/ml/machine-learning-databases/00240/UCI HAR 

Dataset.names" 

 

# import copy 

import os 

from subprocess import call 

 

print("") 

 

print("Downloading UCI HAR Dataset...") 

if not os.path.exists("UCI HAR Dataset.zip"): 

    call( 

        'wget "https://archive.ics.uci.edu/ml/machine-learning-databases/00240/UCI HAR 

Dataset.zip"', 

        shell=True 

    ) 

    print("Downloading done.\n") 

else: 
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    print("Dataset already downloaded. Did not download twice.\n") 

 

 

print("Extracting...") 

extract_directory = os.path.abspath("UCI HAR Dataset") 

if not os.path.exists(extract_directory): 

    call( 

        'unzip -nq "UCI HAR Dataset.zip"', 

        shell=True 

    ) 

    print("Extracting successfully done to {}.".format(extract_directory)) 

else: 

    print("Dataset already extracted. Did not extract twice.\n") 

lstm_architecture.py 

 

__author__ = 'jk_ranbir' 

 

import tensorflow as tf 

from sklearn import metrics 

from sklearn.utils import shuffle 

import numpy as np 

from datetime import datetime 

import time 

 

 

def one_hot(y): 

    """convert label from dense to one hot 

      argument: 
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        label: ndarray dense label ,shape: [sample_num,1] 

      return: 

        one_hot_label: ndarray  one hot, shape: [sample_num,n_class] 

    """ 

    # e.g.: [[5], [0], [3]] --> [[0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]] 

 

    y = y.reshape(len(y)) 

    n_values = np.max(y) + 1 

    return np.eye(n_values)[np.array(y, dtype=np.int32)]  # Returns FLOATS 

 

 

def batch_norm(input_tensor, config, i): 

    # Implementing batch normalisation: this is used out of the residual layers 

    # to normalise those output neurons by mean and standard deviation. 

 

    if config.n_layers_in_highway == 0: 

        # There is no residual layers, no need for batch_norm: 

        return input_tensor 

 

    with tf.variable_scope("batch_norm") as scope: 

        if i != 0: 

            # Do not create extra variables for each time step 

            scope.reuse_variables() 

 

        # Mean and variance normalisation simply crunched over all axes 

        axes = list(range(len(input_tensor.get_shape()))) 

 

        mean, variance = tf.nn.moments(input_tensor, axes=axes, shift=None, name=None, 
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keep_dims=False) 

        stdev = tf.sqrt(variance+0.001) 

 

        # Rescaling 

        bn = input_tensor - mean 

        bn /= stdev 

        # Learnable extra rescaling 

 

        # tf.get_variable("relu_fc_weights", initializer=tf.random_normal(mean=0.0, 

stddev=0.0) 

        bn *= tf.get_variable("a_noreg", initializer=tf.random_normal([1], mean=0.5, 

stddev=0.0)) 

        bn += tf.get_variable("b_noreg", initializer=tf.random_normal([1], mean=0.0, 

stddev=0.0)) 

        # bn *= tf.Variable(0.5, name=(scope.name + "/a_noreg")) 

        # bn += tf.Variable(0.0, name=(scope.name + "/b_noreg")) 

 

    return bn 

 

def relu_fc(input_2D_tensor_list, features_len, new_features_len, config): 

    """make a relu fully-connected layer, mainly change the shape of tensor 

       both input and output is a list of tensor 

        argument: 

            input_2D_tensor_list: list shape is [batch_size,feature_num] 

            features_len: int the initial features length of input_2D_tensor 

            new_feature_len: int the final features length of output_2D_tensor 

            config: Config used for weights initializers 

        return: 
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            output_2D_tensor_list lit shape is [batch_size,new_feature_len] 

    """ 

 

    W = tf.get_variable( 

        "relu_fc_weights", 

        initializer=tf.random_normal( 

            [features_len, new_features_len], 

            mean=0.0, 

            stddev=float(config.weights_stddev) 

        ) 

    ) 

    b = tf.get_variable( 

        "relu_fc_biases_noreg", 

        initializer=tf.random_normal( 

            [new_features_len], 

            mean=float(config.bias_mean), 

            stddev=float(config.weights_stddev) 

        ) 

    ) 

 

    # intra-timestep multiplication: 

    output_2D_tensor_list = [ 

        tf.nn.relu(tf.matmul(input_2D_tensor, W) + b) 

            for input_2D_tensor in input_2D_tensor_list 

    ] 

 

    return output_2D_tensor_list 
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def single_LSTM_cell(input_hidden_tensor, n_outputs): 

    """ define the basic LSTM layer 

        argument: 

            input_hidden_tensor: list a list of tensor, 

                                 shape: time_steps*[batch_size,n_inputs] 

            n_outputs: int num of LSTM layer output 

        return: 

            outputs: list a time_steps list of tensor, 

                     shape: time_steps*[batch_size,n_outputs] 

    """ 

    with tf.variable_scope("lstm_cell"): 

        lstm_cell = tf.nn.rnn_cell.LSTMCell(n_outputs, state_is_tuple=True, 

forget_bias=0.999) 

        outputs, _ = tf.nn.static_rnn(lstm_cell, input_hidden_tensor, dtype=tf.float32) 

    return outputs 

 

 

def bi_LSTM_cell(input_hidden_tensor, n_inputs, n_outputs, config): 

    """build bi-LSTM, concatenating the two directions in an inner manner. 

        argument: 

            input_hidden_tensor: list a time_steps series of tensor, shape: [sample_num, 

n_inputs] 

            n_inputs: int units of input tensor 

            n_outputs: int units of output tensor, each bi-LSTM will have half those internal 

units 

            config: Config used for the relu_fc 

        return: 
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            layer_hidden_outputs: list a time_steps series of tensor, shape: [sample_num, 

n_outputs] 

    """ 

    n_outputs = int(n_outputs/2) 

 

    print ("bidir:") 

 

    with tf.variable_scope('pass_forward') as scope2: 

        hidden_forward = relu_fc(input_hidden_tensor, n_inputs, n_outputs, config) 

        forward = single_LSTM_cell(hidden_forward, n_outputs) 

 

    print (len(hidden_forward), str(hidden_forward[0].get_shape())) 

 

    # Backward pass is as simple as surrounding the cell with a double inversion: 

    with tf.variable_scope('pass_backward') as scope2: 

        hidden_backward = relu_fc(input_hidden_tensor, n_inputs, n_outputs, config) 

        backward = list(reversed(single_LSTM_cell(list(reversed(hidden_backward)), 

n_outputs))) 

 

    with tf.variable_scope('bidir_concat') as scope: 

        # Simply concatenating cells' outputs at each timesteps on the innermost 

        # dimension, like if the two cells acted as one cell 

        # with twice the n_hidden size: 

        layer_hidden_outputs = [ 

            tf.concat([f, b], len(f.get_shape()) - 1) 

                for f, b in zip(forward, backward)] 

 

    return layer_hidden_outputs 
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def residual_bidirectional_LSTM_layers(input_hidden_tensor, n_input, n_output, 

layer_level, config, keep_prob_for_dropout): 

    """This architecture is only enabled if "config.n_layers_in_highway" has a 

    value only greater than int(0). The arguments are same than for bi_LSTM_cell. 

    arguments: 

        input_hidden_tensor: list a time_steps series of tensor, shape: [sample_num, 

n_inputs] 

        n_inputs: int units of input tensor 

        n_outputs: int units of output tensor, each bi-LSTM will have half those internal 

units 

        config: Config used for determining if there are residual connections and if yes, their 

number and with some batch_norm. 

    return: 

        layer_hidden_outputs: list a time_steps series of tensor, shape: [sample_num, 

n_outputs] 

    """ 

    with tf.variable_scope('layer_{}'.format(layer_level)) as scope: 

 

        if config.use_bidirectionnal_cells: 

            get_lstm = lambda input_tensor: bi_LSTM_cell(input_tensor, n_input, n_output, 

config) 

        else: 

            get_lstm = lambda input_tensor: single_LSTM_cell(relu_fc(input_tensor, 

n_input, n_output, config), n_output) 

        def add_highway_redisual(layer, residual_minilayer): 

            return [a + b for a, b in zip(layer, residual_minilayer)] 
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        hidden_LSTM_layer = get_lstm(input_hidden_tensor) 

        # Adding K new (residual bidir) connections to this first layer: 

        for i in range(config.n_layers_in_highway - 1): 

            with tf.variable_scope('LSTM_residual_{}'.format(i)) as scope2: 

                hidden_LSTM_layer = add_highway_redisual( 

                    hidden_LSTM_layer, 

                    get_lstm(input_hidden_tensor) 

                ) 

 

        if config.also_add_dropout_between_stacked_cells: 

            hidden_LSTM_layer = [tf.nn.dropout(out, keep_prob_for_dropout) for out in 

hidden_LSTM_layer] 

 

        return [batch_norm(out, config, i) for i, out in enumerate(hidden_LSTM_layer)] 

 

 

def LSTM_network(feature_mat, config, keep_prob_for_dropout): 

    """model a LSTM Network, 

      it stacks 2 LSTM layers, each layer has n_hidden=32 cells 

       and 1 output layer, it is a full connet layer 

      argument: 

        feature_mat: ndarray fature matrix, shape=[batch_size,time_steps,n_inputs] 

        config: class containing config of network 

      return: 

              : ndarray  output shape [batch_size, n_classes] 

    """ 
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    with tf.variable_scope('LSTM_network') as scope:  # TensorFlow graph naming 

 

        feature_mat = tf.nn.dropout(feature_mat, keep_prob_for_dropout) 

 

        # Exchange dim 1 and dim 0 

        feature_mat = tf.transpose(feature_mat, [1, 0, 2]) 

        print (feature_mat.get_shape()) 

        # New feature_mat's shape: [time_steps, batch_size, n_inputs] 

 

        # Temporarily crush the feature_mat's dimensions 

        feature_mat = tf.reshape(feature_mat, [-1, config.n_inputs]) 

        print (feature_mat.get_shape()) 

        # New feature_mat's shape: [time_steps*batch_size, n_inputs] 

 

        # Split the series because the rnn cell needs time_steps features, each of shape: 

        hidden = tf.split(feature_mat, config.n_steps, 0) 

        print (len(hidden), str(hidden[0].get_shape())) 

        # New shape: a list of lenght "time_step" containing tensors of shape [batch_size, 

n_hidden] 

 

        # Stacking LSTM cells, at least one is stacked: 

        print ("\nCreating hidden #1:") 

        hidden = residual_bidirectional_LSTM_layers(hidden, config.n_inputs, 

config.n_hidden, 1, config, keep_prob_for_dropout) 

        print (len(hidden), str(hidden[0].get_shape())) 

 

        for stacked_hidden_index in range(config.n_stacked_layers - 1): 

            # If the config permits it, we stack more lstm cells: 
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            print ("\nCreating hidden #{}:".format(stacked_hidden_index+2)) 

            hidden = residual_bidirectional_LSTM_layers(hidden, config.n_hidden, 

config.n_hidden, stacked_hidden_index+2, config, keep_prob_for_dropout) 

            print (len(hidden), str(hidden[0].get_shape())) 

 

        print ("") 

 

        # Final fully-connected activation logits 

        # Get the last output tensor of the inner loop output series, of shape [batch_size, 

n_classes] 

        last_hidden = tf.nn.dropout(hidden[-1], keep_prob_for_dropout) 

        last_logits = relu_fc( 

            [last_hidden], 

            config.n_hidden, config.n_classes, config 

        )[0] 

        return last_logits 

 

 

def run_with_config(Config, X_train, y_train, X_test, y_test): 

    start_time = datetime.now() 

    print ("Start Time: ",time.ctime()) 

    print ("") 

    tf.reset_default_graph()  # To enable to run multiple things in a loop 

 

    #----------------------------------- 

    # Define parameters for model 

    #----------------------------------- 

    config = Config(X_train, X_test) 
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    print("Some useful info to get an insight on dataset's shape and normalisation:") 

    print("features shape, labels shape, each features mean, each features standard 

deviation") 

    print(X_test.shape, y_test.shape, 

          np.mean(X_test), np.std(X_test)) 

    print("the dataset is therefore properly normalised, as expected.") 

 

    #------------------------------------------------------ 

    # Let's get serious and build the neural network 

    #------------------------------------------------------ 

    with tf.device("/cpu:0"):  # Remove this line to use GPU. If you have a too small GPU, 

it crashes. 

    #with tf.device('/gpu:0'): 

    #with tf.device('/gpu:1'): 

    #mirrored_strategy = tf.contrib.distribute.MirroredStrategy(devices=["/gpu:0", 

"/gpu:1"]) 

    #with mirrored_strategy.scope(): 

        X = tf.placeholder(tf.float32, [ 

                           None, config.n_steps, config.n_inputs], name="X") 

        Y = tf.placeholder(tf.float32, [ 

                           None, config.n_classes], name="Y") 

 

        # is_train for dropout control: 

        is_train = tf.placeholder(tf.bool, name="is_train") 

        keep_prob_for_dropout = tf.cond(is_train, 

            lambda: tf.constant( 

                config.keep_prob_for_dropout, 

                name="keep_prob_for_dropout" 
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            ), 

            lambda: tf.constant( 

                1.0, 

                name="keep_prob_for_dropout" 

            ) 

        ) 

 

        pred_y = LSTM_network(X, config, keep_prob_for_dropout) 

 

        # Loss, optimizer, evaluation 

 

        # Softmax loss with L2 and L1 layer-wise regularisation 

        print ("Unregularised variables:") 

        for unreg in [tf_var.name for tf_var in tf.trainable_variables() if ("noreg" in 

tf_var.name or "Bias" in tf_var.name)]: 

            print (unreg) 

        l2 = config.lambda_loss_amount * sum( 

            tf.nn.l2_loss(tf_var) 

                for tf_var in tf.trainable_variables() 

                if not ("noreg" in tf_var.name or "Bias" in tf_var.name) 

        ) 

        # first_weights = [w for w in tf.all_variables() if w.name == 

'LSTM_network/layer_1/pass_forward/relu_fc_weights:0'][0] 

        # l1 = config.lambda_loss_amount * tf.reduce_mean(tf.abs(first_weights)) 

        loss = tf.reduce_mean( 

            tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred_y,labels=Y)) + l2  # + 

l1 
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        # Gradient clipping Adam optimizer with gradient noise 

        optimize = tf.contrib.layers.optimize_loss( 

            loss, 

            global_step=tf.Variable(0), 

            learning_rate=config.learning_rate, 

            optimizer=tf.train.AdamOptimizer(learning_rate=config.learning_rate), 

            clip_gradients=config.clip_gradients, 

            gradient_noise_scale=config.gradient_noise_scale 

        ) 

 

        correct_pred = tf.equal(tf.argmax(pred_y, 1), tf.argmax(Y, 1)) 

        accuracy = tf.reduce_mean(tf.cast(correct_pred, dtype=tf.float32)) 

 

    #-------------------------------------------- 

    # Hooray, now train the neural network 

    #-------------------------------------------- 

    # Note that log_device_placement can be turned of for less console spam. 

 

    #sessconfig = tf.ConfigProto(log_device_placement=False)     

    sessconfig = tf.ConfigProto(allow_soft_placement = 

True,log_device_placement=False) 

    #sessconfig.gpu_options.allow_growth = True 

    with tf.Session(config=sessconfig) as sess: 

        #init = tf.global_variables_initializer() 

        sess.run(tf.global_variables_initializer()) 

 

        best_accuracy = (0.0, "iter: -1") 

        best_f1_score = (0.0, "iter: -1") 
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        # Start training for each batch and loop epochs 

 

        worst_batches = [] 

 

        for i in range(config.training_epochs): 

 

            # Loop batches for an epoch: 

            shuffled_X, shuffled_y = shuffle(X_train, y_train, random_state=i*42) 

            for start, end in zip(range(0, config.train_count, config.batch_size), 

                                  range(config.batch_size, config.train_count + 1, config.batch_size)): 

 

                _, train_acc, train_loss, train_pred = sess.run( 

                    [optimize, accuracy, loss, pred_y], 

                    feed_dict={ 

                        X: shuffled_X[start:end], 

                        Y: shuffled_y[start:end], 

                        is_train: True 

                    } 

                ) 

 

                worst_batches.append( 

                    (train_loss, shuffled_X[start:end], shuffled_y[start:end]) 

                ) 

                worst_batches = list(sorted(worst_batches))[-5:]  # Keep 5 poorest 

 

            # Train F1 score is not on boosting 

            train_f1_score = metrics.f1_score( 
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                shuffled_y[start:end].argmax(1), train_pred.argmax(1), average="weighted" 

            ) 

 

            # Retrain on top worst batches of this epoch (boosting): 

            # a.k.a. "focus on the hardest exercises while training": 

            for _, x_, y_ in worst_batches: 

 

                _, train_acc, train_loss, train_pred = sess.run( 

                    [optimize, accuracy, loss, pred_y], 

                    feed_dict={ 

                        X: x_, 

                        Y: y_, 

                        is_train: True 

                    } 

                ) 

 

            # Test completely at the end of every epoch: 

            # Calculate accuracy and F1 score 

            pred_out, accuracy_out, loss_out = sess.run( 

                [pred_y, accuracy, loss], 

                feed_dict={ 

                    X: X_test, 

                    Y: y_test, 

                    is_train: False 

                } 

            ) 

 

            # "y_test.argmax(1)": could be optimised by being computed once... 
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            f1_score_out = metrics.f1_score( 

                y_test.argmax(1), pred_out.argmax(1), average="weighted" 

            ) 

 

            print ( 

                "iter: {}, ".format(i) + \ 

                "train loss: {}, ".format(train_loss) + \ 

                "train accuracy: {}, ".format(train_acc) + \ 

                "train F1-score: {}, ".format(train_f1_score) + \ 

                "test loss: {}, ".format(loss_out) + \ 

                "prediction accuracy: {}, ".format(accuracy_out) + \ 

                "test F1-score: {}".format(f1_score_out) 

            ) 

 

            best_accuracy = max(best_accuracy, (accuracy_out, "iter: {}".format(i))) 

            best_f1_score = max(best_f1_score, (f1_score_out, "iter: {}".format(i))) 

 

        print("") 

        print("final prediction accuracy: {}".format(accuracy_out)) 

        print("best epoch's prediction accuracy: {}".format(best_accuracy)) 

        print("final F1 score: {}".format(f1_score_out)) 

        print("best epoch's F1 score: {}".format(best_f1_score)) 

        print("") 

        end_time = datetime.now() 

        print("End Time: ",time.ctime()) 

        print("Exec Duration: {}".format(end_time - start_time)) 

        print("") 
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    # returning both final and bests accuracies and f1 scores. 

    return accuracy_out, best_accuracy, f1_score_out, best_f1_score 

 

 

Config_Dataset_HAR.py 

 

#!/usr/bin/env python 

# coding: utf-8 

 

# In[ ]: 

__author__ = 'jkranbir' 

 

# Note: Linux bash commands start with a "!" inside those "ipython notebook" cells 

import os 

DATA_PATH = "data/" 

get_ipython().system('pwd && ls') 

os.chdir(DATA_PATH) 

get_ipython().system('pwd && ls') 

get_ipython().system('python download_datasets.py') 

get_ipython().system('pwd && ls') 

os.chdir("..") 

get_ipython().system('pwd && ls') 

DATASET_PATH = DATA_PATH + "UCI HAR Dataset/" 

print("\n" + "Dataset is now located at: " + DATASET_PATH) 

 

# In[ ]: 

__author__ = 'jkranbir' 
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from lstm_architecture import one_hot, run_with_config 

import numpy as np 

import os 

#os.environ["CUDA_VISIBLE_DEVICES"]="0,1"   

 

#-------------------------------------------- 

# Neural net's config. 

#-------------------------------------------- 

 

class Config(object): 

    """ 

    define a class to store parameters, 

    the input should be feature mat of training and testing 

    """ 

 

    def __init__(self, X_train, X_test): 

        # Data shaping 

        self.train_count = len(X_train)  # 7352 training series 

        self.test_data_count = len(X_test)  # 2947 testing series 

        self.n_steps = len(X_train[0])  # 128 time_steps per series 

        self.n_classes = 6  # Final output classes 

 

        # Training 

        self.learning_rate = 0.001 

        self.lambda_loss_amount = 0.005 

        self.training_epochs = 250 #5  

        self.batch_size = 100 

        self.clip_gradients = 15.0 
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        self.gradient_noise_scale = None 

        # Dropout is added on inputs and after each stacked layers (but not 

        # between residual layers). 

        self.keep_prob_for_dropout = 0.85  # **(1/3.0) 

 

        # Linear+relu structure 

        self.bias_mean = 0.3 

        # I would recommend between 0.1 and 1.0 or to change and use a xavier 

        # initializer 

        self.weights_stddev = 0.2 

 

        ######## 

        # NOTE: I think that if any of the below parameters are changed, 

        # the best is to readjust every parameters in the "Training" section 

        # above to properly compare the architectures only once optimised. 

        ######## 

 

        # LSTM structure 

        # Features count is of 9: three 3D sensors features over time 

        self.n_inputs = len(X_train[0][0]) 

        self.n_hidden = 256  # nb of neurons inside the neural network 

        # Use bidir in every LSTM cell, or not: 

        self.use_bidirectionnal_cells = True #False 

 

        # High-level deep architecture 

        self.also_add_dropout_between_stacked_cells = False #True 

        # NOTE: values of exactly 1 (int) for those 2 high-level parameters below totally 

disables them and result in only 1 starting LSTM. 
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        # self.n_layers_in_highway = 1  # Number of residual connections to the LSTMs 

(highway-style), this is did for each stacked block (inside them). 

        # self.n_stacked_layers = 1  # Stack multiple blocks of residual 

        # layers. 

 

#-------------------------------------------- 

# Dataset-specific constants and functions + loading 

#-------------------------------------------- 

 

# Useful Constants 

 

# Those are separate normalised input features for the neural network 

INPUT_SIGNAL_TYPES = [ 

    "body_acc_x_", 

    "body_acc_y_", 

    "body_acc_z_", 

    "body_gyro_x_", 

    "body_gyro_y_", 

    "body_gyro_z_", 

    "total_acc_x_", 

    "total_acc_y_", 

    "total_acc_z_" 

] 

 

# Output classes to learn how to classify 

LABELS = [ 

    "WALKING", 

    "WALKING_UPSTAIRS", 
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    "WALKING_DOWNSTAIRS", 

    "SITTING", 

    "STANDING", 

    "LAYING" 

] 

 

DATA_PATH = "data/" 

DATASET_PATH = DATA_PATH + "UCI HAR Dataset/" 

 

TRAIN = "train/" 

TEST = "test/" 

 

 

# Load "X" (the neural network's training and testing inputs) 

 

def load_X(X_signals_paths): 

    """ 

    Given attribute (train or test) of feature, read all 9 features into an 

    np ndarray of shape [sample_sequence_idx, time_step, feature_num] 

        argument:   X_signals_paths str attribute of feature: 'train' or 'test' 

        return:     np ndarray, tensor of features 

    """ 

    X_signals = [] 

 

    for signal_type_path in X_signals_paths: 

        file = open(signal_type_path, 'r') 

        # Read dataset from disk, dealing with text files' syntax 

        X_signals.append( 
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            [np.array(serie, dtype=np.float32) for serie in [ 

                row.replace('  ', ' ').strip().split(' ') for row in file 

            ]] 

        ) 

        file.close() 

    return np.transpose(np.array(X_signals), (1, 2, 0)) 

X_train_signals_paths = [ 

    DATASET_PATH + TRAIN + "Inertial Signals/" + signal + "train.txt" for signal in 

INPUT_SIGNAL_TYPES 

] 

X_test_signals_paths = [ 

    DATASET_PATH + TEST + "Inertial Signals/" + signal + "test.txt" for signal in 

INPUT_SIGNAL_TYPES 

] 

X_train = load_X(X_train_signals_paths) 

X_test = load_X(X_test_signals_paths) 

# Load "y" (the neural network's training and testing outputs) 

 

def load_y(y_path): 

    """ 

    Read Y file of values to be predicted 

        argument: y_path str attibute of Y: 'train' or 'test' 

        return: Y ndarray / tensor of the 6 one_hot labels of each sample 

    """ 

    file = open(y_path, 'r') 

    # Read dataset from disk, dealing with text file's syntax 

    y_ = np.array( 

        [elem for elem in [ 
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            row.replace('  ', ' ').strip().split(' ') for row in file 

        ]], 

        dtype=np.int32 

    ) 

    file.close() 

 

    # Substract 1 to each output class for friendly 0-based indexing 

    return one_hot(y_ - 1) 

 

y_train_path = DATASET_PATH + TRAIN + "y_train.txt" 

y_test_path = DATASET_PATH + TEST + "y_test.txt" 

y_train = load_y(y_train_path) 

y_test = load_y(y_test_path) 

 

#-------------------------------------------- 

# Training (maybe multiple) experiment(s) 

#-------------------------------------------- 

 

n_layers_in_highway = 4 

n_stacked_layers = 4 

trial_name = "{}x{}".format(n_layers_in_highway, n_stacked_layers) 

 

for learning_rate in [0.001]:  # [0.01, 0.001, 0.0001]: 

    for lambda_loss_amount in [0.005]: 

        for clip_gradients in [15.0]: 

            print ("learning_rate: {}".format(learning_rate)) 

            print ("lambda_loss_amount: {}".format(lambda_loss_amount))             

            print ("") 
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            class EditedConfig(Config): 

                def __init__(self, X, Y): 

                    super(EditedConfig, self).__init__(X, Y) 

 

                    # Edit only some parameters: 

                    self.learning_rate = learning_rate 

                    self.lambda_loss_amount = lambda_loss_amount 

                    self.clip_gradients = clip_gradients 

                    # Architecture params: 

                    self.n_layers_in_highway = n_layers_in_highway 

                    self.n_stacked_layers = n_stacked_layers 

 

            # # Useful catch upon looping (e.g.: not enough memory) 

            # try: 

            #     accuracy_out, best_accuracy = run_with_config(EditedConfig) 

            # except: 

            #     accuracy_out, best_accuracy = -1, -1 

            accuracy_out, best_accuracy, f1_score_out, best_f1_score = ( 

                run_with_config(EditedConfig, X_train, y_train, X_test, y_test) 

            ) 

            print (accuracy_out, best_accuracy, f1_score_out, best_f1_score) 

 

            with open('{}_result_HAR_6.txt'.format(trial_name), 'a') as f: 

                f.write(str(learning_rate) + ' \t' + str(lambda_loss_amount) + ' \t' + 

str(clip_gradients) + ' \t' + str( 

                    accuracy_out) + ' \t' + str(best_accuracy) + ' \t' + str(f1_score_out) + ' \t' + 

str(best_f1_score) + '\n\n') 



 
 
 

168 
 

 

            print ("________________________________________________________") 

        print ("") 

print ("Done.") 

 

 

# In[ ]: 

B.2 PyTorch Code 

 

Script.py 

 

__author__ = 'jkranbir' 

 

# Note: Linux bash commands start with a "!" inside those "ipython notebook" cells 

import os 

 

DATA_PATH = "data/" 

 

!pwd && ls 

os.chdir(DATA_PATH) 

!pwd && ls 

 

!python download_datasets.py 

 

!pwd && ls 

os.chdir("..") 

!pwd && ls 
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DATASET_PATH = DATA_PATH + "UCI HAR Dataset/" 

print("\n" + "Dataset is now located at: " + DATASET_PATH) 

 

 

 

 

 

network_1.py 

 

# encoding=utf-8 

""" 

    Created on 12:48 2019/03/10  

    @author: Jagadish Kumar Ranbirsingh 

""" 

import torch.nn as nn 

import torch.nn.functional as F 

 

class Network(nn.Module): 

    def __init__(self): 

        super(Network, self).__init__() 

        self.conv1 = nn.Sequential( 

            nn.Conv2d(in_channels=9, out_channels=32, kernel_size=(1, 9)), 

            # nn.BatchNorm1d() 

            nn.ReLU(), 

            nn.MaxPool2d(kernel_size=(1, 2), stride=2) 

        ) 

        self.conv2 = nn.Sequential( 
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            nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(1, 9)), 

            nn.ReLU(), 

            nn.MaxPool2d(kernel_size=(1, 2), stride=2) 

        ) 

        self.fc1 = nn.Sequential( 

            nn.Linear(in_features=64 * 26, out_features=1000), 

            nn.ReLU() 

        ) 

        self.fc2 = nn.Sequential( 

            nn.Linear(in_features=1000, out_features=500), 

            nn.ReLU() 

        ) 

        self.fc3 = nn.Sequential( 

            nn.Linear(in_features=500, out_features=6) 

        ) 

 

    def forward(self, x): 

        out = self.conv1(x) 

        out = self.conv2(out) 

        out = out.reshape(-1, 64 * 26) 

        out = self.fc1(out) 

        out = self.fc2(out) 

        out = self.fc3(out) 

        out = F.softmax(out, dim=1) 

        return out 

 

network.py 
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# encoding=utf-8 

""" 

    Created on 12:48 2019/03/10  

    @author: Jagadish Kumar Ranbirsingh 

""" 

import torch.nn as nn 

import torch.nn.functional as F 

 

 

class CNN(nn.Module): 

    def __init__(self): 

        super(CNN, self).__init__()        

        self.conv1 = nn.Sequential( 

            nn.Conv2d(in_channels=9, out_channels=32, kernel_size=(1, 9)), 

            # nn.BatchNorm1d() 

            nn.ReLU(), 

            nn.MaxPool2d(kernel_size=(1, 2), stride=2) 

        ) 

        self.conv2 = nn.Sequential( 

            nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(1, 9)), 

            nn.ReLU(), 

            nn.MaxPool2d(kernel_size=(1, 2), stride=2) 

        ) 

        self.conv2_drop = nn.Dropout2d() 

 

        self.fc1 = nn.Sequential( 

            nn.Linear(in_features=64 * 26, out_features=1000), 

            nn.ReLU() 
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        ) 

        self.fc2 = nn.Sequential( 

            nn.Linear(in_features=1000, out_features=500), 

            nn.ReLU() 

        ) 

        self.fc3 = nn.Sequential( 

            nn.Linear(in_features=500, out_features=6) 

        ) 

    def forward(self, x): 

        out = self.conv1(x) 

        out = self.conv2_drop(self.conv2(out)) 

 out = out.view(-1, 64 * 26) 

        out = self.fc1(out) 

        out = self.fc2(out) 

        out = self.fc3(out) 

        return out 

 

class Network(nn.Module): 

    def __init__(self): 

        super(Network, self).__init__() 

        self.cnn = CNN() 

        self.rnn = nn.LSTM(64 * 26, 6, 2) 

 

    def forward(self, x): 

        out = self.cnn(x) 

        out = self.rnn(out) 

        out = F.softmax(out, dim=1) 

        return out 
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data_preprocess.py 

 

# encoding=utf-8 

""" 

    Created on 07:51 2019/03/10  

    @author: Jagadish Kumar Ranbirsingh 

""" 

import numpy as np 

from torch.utils.data import Dataset, DataLoader 

from torchvision import transforms 

 

# This is for parsing the X data, you can ignore it if you do not need preprocessing 

def format_data_x(datafile): 

    x_data = None 

    for item in datafile: 

        item_data = np.loadtxt(item, dtype=np.float) 

        if x_data is None: 

            x_data = np.zeros((len(item_data), 1)) 

        x_data = np.hstack((x_data, item_data)) 

    x_data = x_data[:, 1:] 

    print(x_data.shape) 

    X = None 

    for i in range(len(x_data)): 

        row = np.asarray(x_data[i, :]) 

        row = row.reshape(9, 128).T 

        if X is None: 

            X = np.zeros((len(x_data), 128, 9)) 
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        X[i] = row 

    print(X.shape) 

    return X 

 

# This is for parsing the Y data, you can ignore it if you do not need preprocessing 

def format_data_y(datafile): 

    data = np.loadtxt(datafile, dtype=np.int) - 1 

    YY = np.eye(6)[data] 

    return YY 

 

 # This for processing the dataset from scratch 

 # After script downloading the dataset, program put it in the DATA_PATH folder 

  

def load_data():                 

    DATA_PATH = 'data/' 

    DATASET_PATH = DATA_PATH + 'UCI HAR Dataset/' 

    TRAIN = 'train/' 

    TEST = 'test/' 

         

    INPUT_SIGNAL_TYPES = [ 

            "body_acc_x_", 

            "body_acc_y_", 

            "body_acc_z_", 

            "body_gyro_x_", 

            "body_gyro_y_", 

            "body_gyro_z_", 

            "total_acc_x_", 

            "total_acc_y_", 
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            "total_acc_z_" 

    ] 

    str_train_files = [DATASET_PATH + TRAIN + 'Inertial Signals/' + item + 'train.txt' 

for item in 

                        INPUT_SIGNAL_TYPES] 

    str_test_files = [DATASET_PATH + TEST + 'Inertial Signals/' + item + 'test.txt' for 

item in INPUT_SIGNAL_TYPES] 

    str_train_y = DATASET_PATH + TRAIN + 'y_train.txt' 

    str_test_y = DATASET_PATH + TEST + 'y_test.txt' 

 

    X_train = format_data_x(str_train_files) 

    X_test = format_data_x(str_test_files) 

    Y_train = format_data_y(str_train_y) 

    Y_test = format_data_y(str_test_y) 

    return X_train, onehot_to_label(Y_train), X_test, onehot_to_label(Y_test) 

def onehot_to_label(y_onehot): 

    a = np.argwhere(y_onehot == 1) 

    return a[:, -1] 

 

class data_loader(Dataset): 

    def __init__(self, samples, labels, t): 

        self.samples = samples 

        self.labels = labels 

        self.T = t 

 

    def __getitem__(self, index): 

        sample, target = self.samples[index], self.labels[index] 

        return self.T(sample), target 
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    def __len__(self): 

        return len(self.samples) 

 

def load(batch_size=100): 

    x_train, y_train, x_test, y_test = load_data() 

    x_train, x_test = x_train.reshape((-1, 9, 1, 128)), x_test.reshape((-1, 9, 1, 128)) 

    transform = transforms.Compose([ 

        transforms.ToTensor(), 

        transforms.Normalize(mean=(0,0,0,0,0,0,0,0,0), std=(1,1,1,1,1,1,1,1,1)) 

    ]) 

    train_set = data_loader(x_train, y_train, transform) 

    test_set = data_loader(x_test, y_test, transform)     

    train_loader = DataLoader(train_set, batch_size=batch_size, num_workers=8, 

pin_memory=True, shuffle=True, drop_last=True) 

    test_loader = DataLoader(test_set, batch_size=batch_size, num_workers=8, 

pin_memory=True, shuffle=False) 

    return train_loader, test_loader 

 

Config_Dataset_HAR.py 

#!/usr/bin/env python 

# coding: utf-8 

 

# In[ ]: 

__author__ = 'jkranbir' 

 

# Note: Linux bash commands start with a "!" inside those "ipython notebook" cells 

import os 
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DATA_PATH = "data/" 

get_ipython().system('pwd && ls') 

os.chdir(DATA_PATH) 

get_ipython().system('pwd && ls') 

get_ipython().system('python download_datasets.py') 

get_ipython().system('pwd && ls') 

os.chdir("..") 

get_ipython().system('pwd && ls') 

 

DATASET_PATH = DATA_PATH + "UCI HAR Dataset/" 

print("\n" + "Dataset is now located at: " + DATASET_PATH) 

 

# In[ ]: 

# encoding=utf-8 

""" 

    Created on 09:41 2019/03/10 

    @author: Jagadish Kumar Ranbirsingh 

""" 

import data_preprocess 

import matplotlib.pyplot as plt 

import network as net 

import numpy as np 

import torch 

import torch.nn as nn 

import torch.optim as optim 

import tqdm 

from datetime import datetime 
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import time 

 

BATCH_SIZE = 100 #256 

N_EPOCH = 10 * 250 #250  In dataset 7352 training series 

LEARNING_RATE = 0.001 

DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') 

print('Device :',DEVICE) 

print('Device Count',torch.cuda.device_count()) 

print('Current Device:',torch.cuda.get_device_name(torch.cuda.current_device())) 

result = [ ] 

 

def train(model, optimizer, train_loader, test_loader): 

    n_batch = len(train_loader.dataset) // BATCH_SIZE 

    print('n_batch',n_batch) 

    criterion = nn.CrossEntropyLoss() 

 

    for e in range(N_EPOCH): 

        model.train() 

        correct, total_loss = 0, 0 

        total = 0 

        for index, (sample, target) in enumerate(train_loader): 

            sample, target = sample.to(DEVICE).float(), target.to(DEVICE).long()             

            sample = sample.view(-1, 9, 1, 128) 

            output = model(sample) 

            loss = criterion(output, target) 

            optimizer.zero_grad() 

            loss.backward() 

            optimizer.step() 



 
 
 

179 
 

            total_loss += loss.item() 

            _, predicted = torch.max(output.data, 1) 

            total += target.size(0) 

            correct += (predicted == target).sum() 

 

            if index % 20 == 0: 

                tqdm.tqdm.write('Epoch: [{}/{}], Batch: [{}/{}], loss:{:.4f}'.format(e + 1, 

N_EPOCH, index + 1, n_batch, loss.item())) 

        acc_train = float(correct) * 100.0 / (BATCH_SIZE * n_batch) 

        tqdm.tqdm.write( 

            'Epoch: [{}/{}], loss: {:.4f}, train acc: {:.2f}%'.format(e + 1, N_EPOCH, 

total_loss * 1.0 / n_batch, acc_train)) 

 

 

 

        # Testing 

        model.train(False) 

        with torch.no_grad(): 

            correct, total = 0, 0 

            for sample, target in test_loader: 

                sample, target = sample.to(DEVICE).float(), target.to(DEVICE).long() 

                sample = sample.view(-1, 9, 1, 128) 

                output = model(sample) 

                _, predicted = torch.max(output.data, 1) 

                total += target.size(0) 

                correct += (predicted == target).sum() 

        acc_test = float(correct) * 100 / total 

        tqdm.tqdm.write('Epoch: [{}/{}], test acc: {:.2f}%'.format(e + 1, N_EPOCH, 
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float(correct) * 100 / total)) 

        result.append([acc_train, acc_test]) 

        result_np = np.array(result, dtype=float) 

        np.savetxt('result.csv', result_np, fmt='%.2f', delimiter=',') 

 

def plot(): 

    data = np.loadtxt('result.csv', delimiter=',') 

    plt.figure() 

    plt.plot(range(1, len(data[:, 0]) + 1), data[:, 0], color='blue', label='train') 

    plt.plot(range(1, len(data[:, 1]) + 1), data[:, 1], color='red', label='test') 

    plt.legend() 

    plt.xlabel('Epoch', fontsize=14) 

    plt.ylabel('Accuracy (%)', fontsize=14) 

    plt.title('Training and Prediction Accuracy', fontsize=20) 

 

if __name__ == '__main__': 

    torch.cuda.manual_seed_all(10) 

    start_time = datetime.now() 

    print ("Start Time: ",time.ctime()) 

    print ("") 

    train_loader, test_loader = data_preprocess.load(batch_size=BATCH_SIZE) 

    model = net.Network() 

    model = model.to(DEVICE) 

    #torch.distributed.init_process_group(backend="nccl") 

    #model = torch.nn.parallel.DistributedDataParallel(model) 

    optimizer = optim.SGD(params=model.parameters(), lr=LEARNING_RATE, 

momentum=0.9) 

    train(model, optimizer, train_loader, test_loader) 
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    result = np.array(result, dtype=float) 

    np.savetxt('result.csv', result, fmt='%.2f', delimiter=',') 

    plot() 

    print("") 

    end_time = datetime.now() 

    print("End Time: ",time.ctime()) 

    print("Exec Duration: {}".format(end_time - start_time)) 

    print("") 

 

# In[ ]: 

 

 

data/download_datasets.py  :  It’s same as TensorFlow. 

 

B.3 Raspberry PI Cluster – Monte Carlo Simulation 

 

server.py 

 

import sys 

import tensorflow as tf 

import netifaces as ni 

 

def getIpAddr(): 

  ni.ifaddresses("eth0") 

  ip = ni.ifaddresses("eth0")[ni.AF_INET][0]["addr"] 

  return ip 
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taskList = 

["192.168.1.16:1024","192.168.1.17:1024","192.168.1.18:1024","192.168.1.19:1024", 

     

"192.168.1.20:1024","192.168.1.21:1024","192.168.1.22:1024","192.168.1.23:1024", 

            

"192.168.1.24:1024","192.168.1.25:1024","192.168.1.26:1024","192.168.1.27:1024", 

            

"192.168.1.28:1024","192.168.1.29:1024","192.168.1.30:1024","192.168.1.31:1024"] 

 

taskName = getIpAddr()+":1024" 

try: 

     taskNum = taskList.index(taskName) 

except ValueError: 

     print(" Unable to find " + taskName + " in the task List.") 

     quit() 

cluster = tf.train.ClusterSpec({"local":taskList}) 

server = tf.train.Server(cluster,job_name="local",task_index=taskNum) 

server.join() 

 

client.py 

 

import tensorflow as tf 

import numpy as np 

import math 

import time 

 

start = time.time() 

size = int(1*math.pow(10,6)) 
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taskList = 

["192.168.1.16:1024","192.168.1.17:1024","192.168.1.18:1024","192.168.1.19:1024", 

     

"192.168.1.20:1024","192.168.1.21:1024","192.168.1.22:1024","192.168.1.23:1024", 

            

"192.168.1.24:1024","192.168.1.25:1024","192.168.1.26:1024","192.168.1.27:1024", 

            

"192.168.1.28:1024","192.168.1.29:1024","192.168.1.30:1024","192.168.1.31:1024"] 

 

taskCount = len(taskList) 

n = size//taskCount 

r = size % taskCount 

cluster = tf.train.ClusterSpec({"local":taskList}) 

total = tf.Variable(0,dtype=tf.float32) 

 

for i in range(0,taskCount): 

  if (i==0): 

    sampleSize = n + r 

  else: 

    sampleSize = n 

 

  deviceName = "/job:local/task:"+str(i) 

  with tf.device(deviceName): 

    pointList = tf.random_uniform(shape=[sampleSize,2],minval=-

1,maxval=1,dtype=tf.float32) 

    distanceList = tf.sqrt(tf.reduce_sum(tf.pow(pointList,2),1)) 

    boolList = tf.less(distanceList,1) 

    circleCount = tf.reduce_sum(tf.cast(boolList,tf.float32)) 
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    total = total + circleCount 

    print("task:",i," sampleSize: ",sampleSize) 

 

with tf.Session("grpc://localhost:1024") as sess: 

  sess.run(tf.global_variables_initializer()) 

  pi = sess.run(4*(total/size)) 

  print("pi:",pi) 

 

end = time.time() 

totalTime = end - start 

print("Time: {:,3f}".format(totalTime)) 

 

B.4 Raspberry PI Cluster Code 

 

lstm_architecture.py 

 

__author__ = 'jk_ranbir' 

 

import tensorflow as tf 

from sklearn import metrics 

from sklearn.utils import shuffle 

import numpy as np 

from datetime import datetime 

import time 

import sys 

#import tensorflow as tf 

import netifaces as ni 
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def getIpAddr(): 

  ni.ifaddresses("eth0") 

  ip = ni.ifaddresses("eth0")[ni.AF_INET][0]["addr"] 

  return ip 

 

tf.app.flags.DEFINE_string("job_name", "", "Either 'ps' or 'worker'") 

FLAGS = tf.app.flags.FLAGS 

 

parameter_servers = ["192.168.1.26:1024"] 

 

workers = 

["192.168.1.16:1024","192.168.1.17:1024","192.168.1.18:1024","192.168.1.19:1024", 

    

"192.168.1.20:1024","192.168.1.21:1024","192.168.1.22:1024","192.168.1.23:1024", 

       

"192.168.1.24:1024","192.168.1.25:1024","192.168.1.26:1024","192.168.1.27:1024", 

           

"192.168.1.28:1024","192.168.1.29:1024","192.168.1.30:1024","192.168.1.31:1024"] 

 

taskName = getIpAddr()+":1024" 

try: 

     taskNum = workers.index(taskName) 

except ValueError: 

     print(" Unable to find " + taskName + " in the worker group.") 

     quit() 

 

  cluster = tf.train.ClusterSpec({"ps":parameter_servers, "worker":workers}) 
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  server = tf.train.Server(cluster,job_name=FLAGS.job_name,task_index=taskNum) 

 

if FLAGS.job_name == "ps": 

   server.join() 

elif FLAGS.job_name == "worker": 

 

 def one_hot(y): 

     """convert label from dense to one hot 

       argument: 

  label: ndarray dense label ,shape: [sample_num,1] 

       return: 

  one_hot_label: ndarray  one hot, shape: [sample_num,n_class] 

     """ 

     # e.g.: [[5], [0], [3]] --> [[0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]] 

     y = y.reshape(len(y)) 

     n_values = np.max(y) + 1 

     return np.eye(n_values)[np.array(y, dtype=np.int32)]  # Returns FLOATS 

 

 

 def batch_norm(input_tensor, config, i): 

     # Implementing batch normalisation: this is used out of the residual layers 

     # to normalise those output neurons by mean and standard deviation. 

 

     if config.n_layers_in_highway == 0: 

  # There is no residual layers, no need for batch_norm: 

  return input_tensor 

     with tf.variable_scope("batch_norm") as scope: 

  if i != 0: 
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      # Do not create extra variables for each time step 

      scope.reuse_variables() 

  # Mean and variance normalisation simply crunched over all axes 

  axes = list(range(len(input_tensor.get_shape()))) 

 

  mean, variance = tf.nn.moments(input_tensor, axes=axes, shift=None, 

name=None, keep_dims=False) 

  stdev = tf.sqrt(variance+0.001) 

  # Rescaling 

  bn = input_tensor - mean 

  bn /= stdev 

  # Learnable extra rescaling 

  # tf.get_variable("relu_fc_weights", 

initializer=tf.random_normal(mean=0.0, stddev=0.0) 

  bn *= tf.get_variable("a_noreg", initializer=tf.random_normal([1], 

mean=0.5, stddev=0.0)) 

  bn += tf.get_variable("b_noreg", initializer=tf.random_normal([1], 

mean=0.0, stddev=0.0)) 

  # bn *= tf.Variable(0.5, name=(scope.name + "/a_noreg")) 

  # bn += tf.Variable(0.0, name=(scope.name + "/b_noreg")) 

     return bn 

 def relu_fc(input_2D_tensor_list, features_len, new_features_len, config): 

     """make a relu fully-connected layer, mainly change the shape of tensor 

        both input and output is a list of tensor 

  argument: 

      input_2D_tensor_list: list shape is [batch_size,feature_num] 

      features_len: int the initial features length of input_2D_tensor 

      new_feature_len: int the final features length of output_2D_tensor 
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      config: Config used for weights initializers 

  return: 

      output_2D_tensor_list lit shape is [batch_size,new_feature_len] 

     """ 

     W = tf.get_variable( 

  "relu_fc_weights", 

  initializer=tf.random_normal( 

      [features_len, new_features_len], 

      mean=0.0, 

      stddev=float(config.weights_stddev) 

  ) 

     ) 

     b = tf.get_variable( 

  "relu_fc_biases_noreg", 

  initializer=tf.random_normal( 

      [new_features_len], 

      mean=float(config.bias_mean), 

      stddev=float(config.weights_stddev) 

  ) 

     ) 

     # intra-timestep multiplication: 

     output_2D_tensor_list = [ 

  tf.nn.relu(tf.matmul(input_2D_tensor, W) + b) 

      for input_2D_tensor in input_2D_tensor_list 

     ] 

     return output_2D_tensor_list 

 def single_LSTM_cell(input_hidden_tensor, n_outputs): 

     """ define the basic LSTM layer 
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  argument: 

      input_hidden_tensor: list a list of tensor, 

                           shape: time_steps*[batch_size,n_inputs] 

      n_outputs: int num of LSTM layer output 

  return: 

      outputs: list a time_steps list of tensor, 

               shape: time_steps*[batch_size,n_outputs] 

     """ 

     with tf.variable_scope("lstm_cell"): 

  lstm_cell = tf.nn.rnn_cell.LSTMCell(n_outputs, state_is_tuple=True, 

forget_bias=0.999) 

  outputs, _ = tf.nn.static_rnn(lstm_cell, input_hidden_tensor, 

dtype=tf.float32) 

     return outputs 

 def bi_LSTM_cell(input_hidden_tensor, n_inputs, n_outputs, config): 

     """build bi-LSTM, concatenating the two directions in an inner manner. 

  argument: 

      input_hidden_tensor: list a time_steps series of tensor, shape: 

[sample_num, n_inputs] 

      n_inputs: int units of input tensor 

      n_outputs: int units of output tensor, each bi-LSTM will have half those 

internal units 

      config: Config used for the relu_fc 

  return: 

      layer_hidden_outputs: list a time_steps series of tensor, shape: 

[sample_num, n_outputs] 

     """ 

     n_outputs = int(n_outputs/2) 
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     print ("bidir:") 

     with tf.variable_scope('pass_forward') as scope2: 

  hidden_forward = relu_fc(input_hidden_tensor, n_inputs, n_outputs, 

config) 

  forward = single_LSTM_cell(hidden_forward, n_outputs) 

 

     print (len(hidden_forward), str(hidden_forward[0].get_shape())) 

 

     # Backward pass is as simple as surrounding the cell with a double inversion: 

     with tf.variable_scope('pass_backward') as scope2: 

  hidden_backward = relu_fc(input_hidden_tensor, n_inputs, n_outputs, 

config) 

  backward = 

list(reversed(single_LSTM_cell(list(reversed(hidden_backward)), n_outputs))) 

 

     with tf.variable_scope('bidir_concat') as scope: 

  # Simply concatenating cells' outputs at each timesteps on the innermost 

  # dimension, like if the two cells acted as one cell 

  # with twice the n_hidden size: 

  layer_hidden_outputs = [ 

      tf.concat([f, b], len(f.get_shape()) - 1) 

          for f, b in zip(forward, backward)] 

     return layer_hidden_outputs 

 def residual_bidirectional_LSTM_layers(input_hidden_tensor, n_input, n_output, 

layer_level, config, keep_prob_for_dropout): 

     """This architecture is only enabled if "config.n_layers_in_highway" has a 

     value only greater than int(0). The arguments are same than for bi_LSTM_cell. 

     arguments: 
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  input_hidden_tensor: list a time_steps series of tensor, shape: 

[sample_num, n_inputs] 

  n_inputs: int units of input tensor 

  n_outputs: int units of output tensor, each bi-LSTM will have half those 

internal units 

  config: Config used for determining if there are residual connections and 

if yes, their number and with some batch_norm. 

     return: 

  layer_hidden_outputs: list a time_steps series of tensor, shape: 

[sample_num, n_outputs] 

     """ 

     with tf.variable_scope('layer_{}'.format(layer_level)) as scope: 

 

  if config.use_bidirectionnal_cells: 

      get_lstm = lambda input_tensor: bi_LSTM_cell(input_tensor, n_input, 

n_output, config) 

  else: 

      get_lstm = lambda input_tensor: 

single_LSTM_cell(relu_fc(input_tensor, n_input, n_output, config), n_output) 

  def add_highway_redisual(layer, residual_minilayer): 

      return [a + b for a, b in zip(layer, residual_minilayer)] 

 

  hidden_LSTM_layer = get_lstm(input_hidden_tensor) 

  # Adding K new (residual bidir) connections to this first layer: 

  for i in range(config.n_layers_in_highway - 1): 

      with tf.variable_scope('LSTM_residual_{}'.format(i)) as scope2: 

          hidden_LSTM_layer = add_highway_redisual( 

              hidden_LSTM_layer, 
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              get_lstm(input_hidden_tensor) ) 

 

  if config.also_add_dropout_between_stacked_cells: 

      hidden_LSTM_layer = [tf.nn.dropout(out, keep_prob_for_dropout) for 

out in hidden_LSTM_layer] 

  return [batch_norm(out, config, i) for i, out in 

enumerate(hidden_LSTM_layer)] 

 def LSTM_network(feature_mat, config, keep_prob_for_dropout): 

     """model a LSTM Network, 

       it stacks 2 LSTM layers, each layer has n_hidden=32 cells 

        and 1 output layer, it is a full connet layer 

       argument: 

  feature_mat: ndarray fature matrix, 

shape=[batch_size,time_steps,n_inputs] 

  config: class containing config of network 

       return: 

        : ndarray  output shape [batch_size, n_classes] 

     """ 

     with tf.variable_scope('LSTM_network') as scope:  # TensorFlow graph 

naming 

  feature_mat = tf.nn.dropout(feature_mat, keep_prob_for_dropout) 

  # Exchange dim 1 and dim 0 

  feature_mat = tf.transpose(feature_mat, [1, 0, 2]) 

  print (feature_mat.get_shape()) 

  # New feature_mat's shape: [time_steps, batch_size, n_inputs] 

 

  # Temporarily crush the feature_mat's dimensions 

  feature_mat = tf.reshape(feature_mat, [-1, config.n_inputs]) 
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  print (feature_mat.get_shape()) 

  # New feature_mat's shape: [time_steps*batch_size, n_inputs] 

 

  # Split the series because the rnn cell needs time_steps features, each of 

shape: 

  hidden = tf.split(feature_mat, config.n_steps, 0) 

  print (len(hidden), str(hidden[0].get_shape())) 

  # New shape: a list of lenght "time_step" containing tensors of shape 

[batch_size, n_hidden] 

 

  # Stacking LSTM cells, at least one is stacked: 

  print ("\nCreating hidden #1:") 

  hidden = residual_bidirectional_LSTM_layers(hidden, config.n_inputs, 

config.n_hidden, 1, config, keep_prob_for_dropout) 

  print (len(hidden), str(hidden[0].get_shape())) 

 

  for stacked_hidden_index in range(config.n_stacked_layers - 1): 

      # If the config permits it, we stack more lstm cells: 

      print ("\nCreating hidden #{}:".format(stacked_hidden_index+2)) 

      hidden = residual_bidirectional_LSTM_layers(hidden, config.n_hidden, 

config.n_hidden, stacked_hidden_index+2, config, keep_prob_for_dropout) 

      print (len(hidden), str(hidden[0].get_shape())) 

  print ("") 

  # Final fully-connected activation logits 

  # Get the last output tensor of the inner loop output series, of shape 

[batch_size, n_classes] 

  last_hidden = tf.nn.dropout(hidden[-1], keep_prob_for_dropout) 

  last_logits = relu_fc( 
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      [last_hidden], 

      config.n_hidden, config.n_classes, config 

  )[0] 

  return last_logits 

 def run_with_config(Config, X_train, y_train, X_test, y_test): 

     start_time = datetime.now() 

     print ("Start Time: ",time.ctime()) 

     print ("") 

     tf.reset_default_graph()  # To enable to run multiple things in a loop 

 

     #----------------------------------- 

     # Define parameters for model 

     #----------------------------------- 

     config = Config(X_train, X_test) 

     print("Some useful info to get an insight on dataset's shape and normalisation:") 

     print("features shape, labels shape, each features mean, each features standard 

deviation") 

     print(X_test.shape, y_test.shape, 

    np.mean(X_test), np.std(X_test)) 

     print("the dataset is therefore properly normalised, as expected.") 

 

     #------------------------------------------------------ 

     # Let's get serious and build the neural network 

     #------------------------------------------------------ 

     #with tf.device("/cpu:0"):  # Remove this line to use GPU. If you have a too 

small GPU, it crashes. 

     with tf.device(tf.train.replica_device_setter(cluster=cluster)): 

     #with tf.device('/gpu:0'): 
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     #with tf.device('/gpu:1'): 

     #mirrored_strategy = tf.contrib.distribute.MirroredStrategy(devices=["/gpu:0", 

"/gpu:1"]) 

     #with mirrored_strategy.scope(): 

  X = tf.placeholder(tf.float32, [ 

                     None, config.n_steps, config.n_inputs], name="X") 

  Y = tf.placeholder(tf.float32, [ 

                     None, config.n_classes], name="Y") 

  # is_train for dropout control: 

  is_train = tf.placeholder(tf.bool, name="is_train") 

  keep_prob_for_dropout = tf.cond(is_train, 

      lambda: tf.constant( 

          config.keep_prob_for_dropout, 

          name="keep_prob_for_dropout" 

      ), 

      lambda: tf.constant( 

          1.0, 

          name="keep_prob_for_dropout" 

      ) 

  ) 

  pred_y = LSTM_network(X, config, keep_prob_for_dropout) 

 

  # Loss, optimizer, evaluation 

  # Softmax loss with L2 and L1 layer-wise regularisation 

  print ("Unregularised variables:") 

  for unreg in [tf_var.name for tf_var in tf.trainable_variables() if ("noreg" 

in tf_var.name or "Bias" in tf_var.name)]: 

      print (unreg) 
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  l2 = config.lambda_loss_amount * sum( 

      tf.nn.l2_loss(tf_var) 

          for tf_var in tf.trainable_variables() 

          if not ("noreg" in tf_var.name or "Bias" in tf_var.name) 

  ) 

  # first_weights = [w for w in tf.all_variables() if w.name == 

'LSTM_network/layer_1/pass_forward/relu_fc_weights:0'][0] 

  # l1 = config.lambda_loss_amount * tf.reduce_mean(tf.abs(first_weights)) 

  loss = tf.reduce_mean( 

      tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred_y,labels=Y)) 

+ l2  # + l1 

 

  # Gradient clipping Adam optimizer with gradient noise 

  optimize = tf.contrib.layers.optimize_loss( 

      loss, 

      global_step=tf.Variable(0), 

      learning_rate=config.learning_rate, 

      optimizer=tf.train.AdamOptimizer(learning_rate=config.learning_rate), 

      clip_gradients=config.clip_gradients, 

      gradient_noise_scale=config.gradient_noise_scale 

  ) 

  correct_pred = tf.equal(tf.argmax(pred_y, 1), tf.argmax(Y, 1)) 

  accuracy = tf.reduce_mean(tf.cast(correct_pred, dtype=tf.float32)) 

     #-------------------------------------------- 

     # Hooray, now train the neural network 

     #-------------------------------------------- 

     # Note that log_device_placement can be turned off for less console spam. 
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     #sessconfig = tf.ConfigProto(log_device_placement=False)     

     sessconfig = tf.ConfigProto(allow_soft_placement = 

True,log_device_placement=False) 

     #sessconfig.gpu_options.allow_growth = True 

     #with tf.Session(config=sessconfig) as sess: 

     with tf.Session("grpc://localhost:1024") as sess: 

  #init = tf.global_variables_initializer() 

  sess.run(tf.global_variables_initializer()) 

  best_accuracy = (0.0, "iter: -1") 

  best_f1_score = (0.0, "iter: -1") 

  # Start training for each batch and loop epochs 

  worst_batches = [] 

  for i in range(config.training_epochs): 

 

      # Loop batches for an epoch: 

      shuffled_X, shuffled_y = shuffle(X_train, y_train, random_state=i*42) 

      for start, end in zip(range(0, config.train_count, config.batch_size), 

                            range(config.batch_size, config.train_count + 1, 

config.batch_size)): 

          _, train_acc, train_loss, train_pred = sess.run( 

              [optimize, accuracy, loss, pred_y], 

              feed_dict={ 

                  X: shuffled_X[start:end], 

                  Y: shuffled_y[start:end], 

                  is_train: True 

              } 

          ) 

          worst_batches.append( 
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              (train_loss, shuffled_X[start:end], shuffled_y[start:end]) 

          ) 

          worst_batches = list(sorted(worst_batches))[-5:]  # Keep 5 poorest 

 

      # Train F1 score is not on boosting 

      train_f1_score = metrics.f1_score( 

          shuffled_y[start:end].argmax(1), train_pred.argmax(1), 

average="weighted" 

      ) 

      # Retrain on top worst batches of this epoch (boosting): 

      # a.k.a. "focus on the hardest exercises while training": 

      for _, x_, y_ in worst_batches: 

          _, train_acc, train_loss, train_pred = sess.run( 

              [optimize, accuracy, loss, pred_y], 

              feed_dict={ 

                  X: x_, 

                  Y: y_, 

                  is_train: True 

              } 

          ) 

 

      # Test completely at the end of every epoch: 

      # Calculate accuracy and F1 score 

      pred_out, accuracy_out, loss_out = sess.run( 

          [pred_y, accuracy, loss], 

          feed_dict={ 

              X: X_test, 

              Y: y_test, 
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              is_train: False 

          } 

      ) 

      # "y_test.argmax(1)": could be optimised by being computed once... 

      f1_score_out = metrics.f1_score( 

          y_test.argmax(1), pred_out.argmax(1), average="weighted" 

      ) 

    print ( 

          "iter: {}, ".format(i) + \ 

          "train loss: {}, ".format(train_loss) + \ 

          "train accuracy: {}, ".format(train_acc) + \ 

          "train F1-score: {}, ".format(train_f1_score) + \ 

          "test loss: {}, ".format(loss_out) + \ 

          "test accuracy: {}, ".format(accuracy_out) + \ 

          "test F1-score: {}".format(f1_score_out) 

      ) 

      best_accuracy = max(best_accuracy, (accuracy_out, "iter: 

{}".format(i))) 

      best_f1_score = max(best_f1_score, (f1_score_out, "iter: {}".format(i))) 

  print("") 

  print("final test accuracy: {}".format(accuracy_out)) 

  print("best epoch's test accuracy: {}".format(best_accuracy)) 

  print("final F1 score: {}".format(f1_score_out)) 

  print("best epoch's F1 score: {}".format(best_f1_score)) 

  print("") 

  end_time = datetime.now() 

  print("End Time: ",time.ctime()) 

  print("Exec Duration: {}".format(end_time - start_time)) 
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  print("") 

     # returning both final and bests accuracies and f1 scores. 

     return accuracy_out, best_accuracy, f1_score_out, best_f1_score 

 

Config_Dataset_HAR.py 

 

#!/usr/bin/env python 

# coding: utf-8 

 

# In[ ]: 

__author__ = 'jkranbir' 

 

# Note: Linux bash commands start with a "!" inside those "ipython notebook" cells 

import os 

 

DATA_PATH = "data/" 

get_ipython().system('pwd && ls') 

os.chdir(DATA_PATH) 

get_ipython().system('pwd && ls') 

 

get_ipython().system('python download_datasets.py') 

 

get_ipython().system('pwd && ls') 

os.chdir("..") 

get_ipython().system('pwd && ls') 

 

DATASET_PATH = DATA_PATH + "UCI HAR Dataset/" 

print("\n" + "Dataset is now located at: " + DATASET_PATH) 
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# In[ ]: 

 

__author__ = 'jkranbir' 

 

from lstm_architecture import one_hot, run_with_config 

import numpy as np 

import os 

#os.environ["CUDA_VISIBLE_DEVICES"]="0,1" 

 

#-------------------------------------------- 

# Neural net's config. 

#-------------------------------------------- 

 

class Config(object): 

    """ 

    define a class to store parameters, 

    the input should be feature mat of training and testing 

    """ 

    def __init__(self, X_train, X_test): 

 

        workers = 

["192.168.1.16:1024","192.168.1.17:1024","192.168.1.18:1024","192.168.1.19:1024", 

            

"192.168.1.20:1024","192.168.1.21:1024","192.168.1.22:1024","192.168.1.23:1024", 

                   

"192.168.1.24:1024","192.168.1.25:1024","192.168.1.26:1024","192.168.1.27:1024", 
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"192.168.1.28:1024","192.168.1.29:1024","192.168.1.30:1024","192.168.1.31:1024"] 

        taskCount = len(workers) 

        cluster = tf.train.ClusterSpec({"worker":workers}) 

 

        # Data shaping 

        self.train_count = len(X_train)/taskCount  # 7352/16 training series 

        self.test_data_count = len(X_test)/taskCount  # 2947/16 testing series 

        self.n_steps = len(X_train[0])  # 128 time_steps per series 

        self.n_classes = 6  # Final output classes 

 

        # Training 

        self.learning_rate = 0.001 

        self.lambda_loss_amount = 0.005 

        self.training_epochs = 250 #5  

        self.batch_size = 100 

        self.clip_gradients = 15.0 

        self.gradient_noise_scale = None 

        # Dropout is added on inputs and after each stacked layers (but not 

        # between residual layers). 

        self.keep_prob_for_dropout = 0.85  # **(1/3.0) 

 

        # Linear+relu structure 

        self.bias_mean = 0.3 

        # I would recommend between 0.1 and 1.0 or to change and use a xavier 

        # initializer 

        self.weights_stddev = 0.2 

 

        ######## 
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        # NOTE: I think that if any of the below parameters are changed, 

        # the best is to readjust every parameters in the "Training" section 

        # above to properly compare the architectures only once optimised. 

        ######## 

 

        # LSTM structure 

        # Features count is of 9: three 3D sensors features over time 

        self.n_inputs = len(X_train[0][0]) 

        self.n_hidden = 256  # nb of neurons inside the neural network 

        # Use bidir in every LSTM cell, or not: 

        self.use_bidirectionnal_cells = True #False 

 

        # High-level deep architecture 

        self.also_add_dropout_between_stacked_cells = False #True 

        # NOTE: values of exactly 1 (int) for those 2 high-level parameters below totally 

disables them and result in only 1 starting LSTM. 

        # self.n_layers_in_highway = 1  # Number of residual connections to the LSTMs 

(highway-style), this is did for each stacked block (inside them). 

        # self.n_stacked_layers = 1  # Stack multiple blocks of residual 

        # layers. 

 

 

#-------------------------------------------- 

# Dataset-specific constants and functions + loading 

#-------------------------------------------- 

 

# Useful Constants 
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# Those are separate normalised input features for the neural network 

INPUT_SIGNAL_TYPES = [ 

    "body_acc_x_", 

    "body_acc_y_", 

    "body_acc_z_", 

    "body_gyro_x_", 

    "body_gyro_y_", 

    "body_gyro_z_", 

    "total_acc_x_", 

    "total_acc_y_", 

    "total_acc_z_" 

] 

 

# Output classes to learn how to classify 

LABELS = [ 

    "WALKING", 

    "WALKING_UPSTAIRS", 

    "WALKING_DOWNSTAIRS", 

    "SITTING", 

    "STANDING", 

    "LAYING" 

] 

 

DATA_PATH = "data/" 

DATASET_PATH = DATA_PATH + "UCI HAR Dataset/" 

 

TRAIN = "train/" 

TEST = "test/" 
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# Load "X" (the neural network's training and testing inputs) 

def load_X(X_signals_paths): 

    """ 

    Given attribute (train or test) of feature, read all 9 features into an 

    np ndarray of shape [sample_sequence_idx, time_step, feature_num] 

        argument:   X_signals_paths str attribute of feature: 'train' or 'test' 

        return:     np ndarray, tensor of features 

    """ 

    X_signals = [] 

    for signal_type_path in X_signals_paths: 

        file = open(signal_type_path, 'r') 

        # Read dataset from disk, dealing with text files' syntax 

        X_signals.append( 

            [np.array(serie, dtype=np.float32) for serie in [ 

                row.replace('  ', ' ').strip().split(' ') for row in file 

            ]] 

        ) 

        file.close() 

    return np.transpose(np.array(X_signals), (1, 2, 0)) 

X_train_signals_paths = [ 

    DATASET_PATH + TRAIN + "Inertial Signals/" + signal + "train.txt" for signal in 

INPUT_SIGNAL_TYPES 

] 

X_test_signals_paths = [ 

    DATASET_PATH + TEST + "Inertial Signals/" + signal + "test.txt" for signal in 

INPUT_SIGNAL_TYPES 

] 
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X_train = load_X(X_train_signals_paths) 

X_test = load_X(X_test_signals_paths) 

 

# Load "y" (the neural network's training and testing outputs) 

def load_y(y_path): 

    """ 

    Read Y file of values to be predicted 

        argument: y_path str attibute of Y: 'train' or 'test' 

        return: Y ndarray / tensor of the 6 one_hot labels of each sample 

    """ 

    file = open(y_path, 'r') 

    # Read dataset from disk, dealing with text file's syntax 

    y_ = np.array( 

        [elem for elem in [ 

            row.replace('  ', ' ').strip().split(' ') for row in file 

        ]], 

        dtype=np.int32 

    ) 

    file.close() 

 

    # Substract 1 to each output class for friendly 0-based indexing 

    return one_hot(y_ - 1) 

 

y_train_path = DATASET_PATH + TRAIN + "y_train.txt" 

y_test_path = DATASET_PATH + TEST + "y_test.txt" 

y_train = load_y(y_train_path) 

y_test = load_y(y_test_path) 

#-------------------------------------------- 
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# Training (maybe multiple) experiment(s) 

#-------------------------------------------- 

n_layers_in_highway = 4 

n_stacked_layers = 4 

trial_name = "{}x{}".format(n_layers_in_highway, n_stacked_layers) 

for i in range(0, taskCount): 

    for learning_rate in [0.001]:  # [0.01, 0.001, 0.0001]: 

 for lambda_loss_amount in [0.005]: 

     for clip_gradients in [15.0]: 

  print ("learning_rate: {}".format(learning_rate)) 

  print ("lambda_loss_amount: {}".format(lambda_loss_amount))             

  print ("") 

 

  class EditedConfig(Config): 

              def __init__(self, X, Y): 

                  super(EditedConfig, self).__init__(X, Y) 

 

                  # Edit only some parameters: 

                  self.learning_rate = learning_rate 

                  self.lambda_loss_amount = lambda_loss_amount 

                  self.clip_gradients = clip_gradients 

                  # Architecture params: 

                  self.n_layers_in_highway = n_layers_in_highway 

                  self.n_stacked_layers = n_stacked_layers 

 

    # # Useful catch upon looping (e.g.: not enough memory) 

    # try: 

    #     accuracy_out, best_accuracy = run_with_config(EditedConfig) 
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    # except: 

    #     accuracy_out, best_accuracy = -1, -1 

    accuracy_out, best_accuracy, f1_score_out, best_f1_score = ( 

       run_with_config(EditedConfig, X_train, y_train, X_test, y_test) 

    ) 

    print (accuracy_out, best_accuracy, f1_score_out, best_f1_score) 

 

    with open('{}_result_HAR_6.txt'.format(trial_name), 'a') as f: 

        f.write(str(learning_rate) + ' \t' + str(lambda_loss_amount) + ' \t' + 

str(clip_gradients) + ' \t' + str( 

           accuracy_out) + ' \t' + str(best_accuracy) + ' \t' + str(f1_score_out) + ' 

\t' + str(best_f1_score) + '\n\n') 

 

     print ("________________________________________________________") 

        print ("") 

    print ("Done.") 

# In[ ]: 

 

data/download_datasets.py : Same as TensorFlow Data 
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APPENDIX C – TENSORFLOW SETUP 

C.1 TensorFlow Installation 

In the previous APPENDIX-A, we have already installed NVIDIA GPUs in the big 

machine. Then we have successfully installed NVIDIA driver for the GPUs along with 

CUDA and cuDNN in the machine. We are starting this section, with the prerequisite of 

all previous installations. 

Step-1: Check if your machine having conda installed previously by the command. 

hpcmonster369@hpc369-Z10PE-D16-WS:~$ conda --version 

 

If not installed, Please download the Anaconda from the website. 

https://www.anaconda.com/download/#linux 

 

Step-2: Go to the download folder and verify the md5sum value of the downloaded 

Anaconda copy with the link given below. 

 

md5sum Anaconda3-5.3.0-Linux-x86_64.sh 

4321e9389b648b5a02824d4473cfdb5f Anaconda3-5.3.0-Linux-x86_64.sh 

 

Verify with below link as having same md5sum # 

http://docs.anaconda.com/anaconda/install/hashes/Anaconda3-5.3.0-Linux-x86_64.sh-

hash/ 

If both having same md5sum values, then you have downloaded the software correctly. 

Step-3: Install Anaconda3. 

bash Anaconda3-5.3.0-Linux-x86_64.sh 
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Step-4: Go to the installation page, accept the Anaconda3 license after installation. 

Step-5: It is recommended to select yes to prepend Anaconda3 install location to the path 

in your bashrc file. You can create a backup of your bashrc file before clicking on yes for 

safety purpose. 

Step-6: Activate the installation by using below command. 

source ~/.bashrc 

Step-7: Verify Installation → conda list 

C.2 TensorFlow Environment Setup 

Step-1: Create the environment 

hpcmonster369@hpc369-Z10PE-D16-WS:~$ conda create --name 

rnn_lstm_har_tensorflow tensorflow-gpu 

 

Step-2: Activate the environment 

hpcmonster369@hpc369-Z10PE-D16-WS:~$ conda activate  rnn_lstm_har_tensorflow 

 

Step-3: Add Dependencies 

  

conda install numpy 

conda install keras 

conda install pandas 

conda install matplotlib 

conda install scipy scikit-learn 

conda install nb_conda 

 

Step-4: Check Available Jupyter Kernel 
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hpcmonster369@hpc369-Z10PE-D16-WS:~$ jupyter kernelspec list 

 

Step-5: Validate the environment 

conda info –envs 

 

Once all steps completed successfully, the environment would display as Figure. 73 

 

Figure. 73 TensorFlow Project Screen 
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APPENDIX D – PYTORCH SETUP 

D.1 PyTorch Installation 

In the previous APPENDIX-A, we have already installed NVIDIA GPUs in the big 

machine. Then we have successfully installed NVIDIA driver for the GPUs along with 

CUDA and cuDNN in the machine. In the APPENDIX-C, we have already installed 

Anaconda3 in the machine. We are starting this section, with the prerequisite of all 

previous installations.  

D.2 PyTorch Environment Setup 

Step-1: Create the environment  

hpcmonster369@hpc369-Z10PE-D16-WS:~$ conda create -n rnn_lstm_har_pytorch 

python=3.6 

 

Step-2: Activate the environment 

hpcmonster369@hpc369-Z10PE-D16-WS:~$ conda activate rnn_lstm_har_pytorch 

 

Step-3: Add Dependencies 

conda install pytorch=0.4.1 cuda90 -c pytorch 

conda install torchvision -c pytorch 

conda install matplotlib 

conda install -c conda-forge tqdm 

conda install nb_conda 

 

Step-4: Validate the environment 

conda info --envs 

Once all steps completed successfully, the environment would display as Figure. 74 
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Figure. 74 PyTorch Project Screen 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

214 
 

APPENDIX E – RASPBERRY PI CLUSTER SETUP 

E.1 Raspberry Pi Parts 

1. Raspberry Pi 3 Model B+ motherboard 

2. Samsung 32 GB Class 10 MicroSD card 

3.  2.5A Power Adapter 

4. 2 Heat sinks 

5. MicroSD USB Reader (Optional) 

6. Premium Case (Optional) 

7. Premium HDMI Cable (Optional) 

 

E.2 Individual Raspberry Pi Installation 

Step-1: 1. Install “Raspbian Stretch with desktop” Kernel Version 4.14 from the official 

Raspberry PI website link given below. 

https://www.raspberrypi.org/downloads/raspbian/ 

 

Step-2: Download and Install the Etcher (Linux x86 version) which will burn the 

Raspbian image to the Micro SD card. The link given below. 

https://www.balena.io/etcher/ 

 

Step-3: Get a microSD card adapter and fire up the Etcher so that all the microSD cards 

having Kernel version 4.14. 

 

Step-4: To enable SSH remote access from the Pi, open the “boot” drive on the microSD 

card and create an empty file named ssh with no extension. Open the folder in a shell and 

run below command. 

$ touch ssh 
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Step-5: To build a package that supports all Raspberry Pi devices—including the Pi 1 and 

Zero use the below command in your Linux machine which will build a .whl package for 

installation in Raspberry pi. 

$ tensorflow/tools/ci_build/ci_build.sh PI \ 

    tensorflow/tools/ci_build/pi/build_raspberry_pi.sh PI_ONE 

For updated version, please use the below link 

https://www.tensorflow.org/install/source_rpi 

Step-6: Copy the wheel file to the Raspberry Pi and install with pip with appropriate 

version number. 

$ pip install tensorflow-version-cp34-none-linux_armv7l.whl 

Step-7: Connect all the Raspberry Pi to a switch which is connected to a network. 

Step-8: Login to Pi using the default password raspberry. 

Step-9: Go to the raspi-config to do the rest of the setup. 

pi@raspberrypi~$ sudo raspi-config 

1. Change the password of default to your own convenient one. 

2.  Set the locale and timezone. 

3. Rename each pi from the default name to rpi# as per the nodes going to be used in the 

cluster. You can do that from the configuration file itself and restart the pi. 

3. Set the hostname in each pi. 

sudo hostname node01       # whatever name you chose 

sudo nano /etc/hostname    # change the hostname here too 

sudo nano /etc/hosts       # change "raspberrypi" to "node01" 



 
 
 

216 
 

4.  In raspi-config, check whether the ssh mode is enabled or not. If not enable it. 

5. Change the assigned memory for GPU to minimum. 

6. Change the assigned memory for CPU to maximum. 

7. In raspi-config, change (3. Boot Options > B2 Wait for Network at Boot) from “No” to 

“Yes”. This will ensure that networking is available before the fstab file mounts the NFS 

client. 

8. Restart the Pi by below command. 

sudo reboot 

9. Repeat the process for all Pis. 

10. For password less entry into each Pi, you can generate SSH keys for all nodes are 

distributing the public keys of each node to the rest of the nodes. Please the link to 

generate SSH keys. After that update /etc/hosts of each node with ip address of rest node. 

https://www.raspberrypi.org/documentation/remote-access/ssh/passwordless.md 

Step-10: To work on a cluster we need to set up the NFS server and client on master node 

and NFS client set up on all the worker nodes which is already mentioned in 5.2 Cluster 

of Raspberry Pis Setup section. 

 

E.3 Installation of Program 

Step-1: Run the server.py program on the each Raspberry Pi node. 

Step-2: The master node should contain both the files lstm_architecture.py and 

Config_Dataset_HAR.py with proper dataset folder inside the NFS server directory.  

Step-3: The folder structure of the dataset is already mentioned in APPENDIX-A. 

Step-4: Run the Config_Dataset_HAR.py on the master node to start the deep model 

iterating. 
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