Unique Mechanisms of Bilateral Blood Pressure Control

Nicholas R. Uba, Lauren A. Naylor, Alyssa C. Watts, Michael E. Holmstrup, Brock T. Jensen.

Slippery Rock University, Slippery Rock, PA

Introduction

- Blood pressure (BP) measurement is used to aid in appropriate clinical decision making
- □ Inter-arm differences (IAD) in systolic BP exists in many individuals at rest
 - $\square \geq 10 \text{ mmHg between arms}$
 - Linked with hypertension, peripheral vascular disease, arterial stiffness, and premature morbidity and mortality.
- At rest, BP should be measured in both arms to determine which is most appropriate for future use
 - During exercise, it is also suggested that bilateral BP is measured, if possible

Active/Passive Bicep Curl

- 12-lead EKG preparation and electrode placement
- Simultaneous BP monitoring with two automated, auscultatory BP monitors
- Exercise Pressor Reflex
 - Active Bicep Curl
 - Mechanical and Metabolic receptors
 - Passive Bicep Curl
 - Metabolic Receptors

Cold pressor test (CPT)

- Non-invasively excites sympathetic nervous system
 - ► Nociceptors
- Raises systolic and diastolic BP
- Normal increase in SBP= 15-20 mmHg

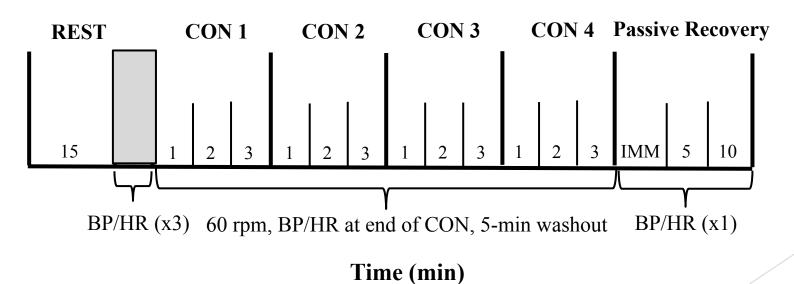
Purpose and Hypotheses

- □ To examine the effects of ALM, PLM, and the CPT on IAD in systolic BP
- □ Hypotheses
 - CPT will induce significant changes in the IAD in systolic BP and provide insight into novel aspects of nervous system control on blood pressure regulation
 - PLM in the upper limbs will stimulate the exercise pressor reflex and alter IAD
 - ALM in the upper limbs will stimulate NO release and alter IAD

Methods- Visit One

□ Informed Consent

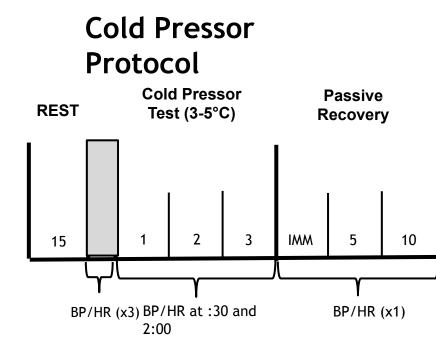
- Body Composition
 - □ Height, weight, BMI, SECA


□ Cholestech Panel

- Total, high-density, low-density cholesterol and glucose
- Pre-test instructions for follow-up:
 - □ 4 hour fast, 24-hour abstinence from exercise, caffeine, alcohol

Methods- Visit Two

Order of intervention randomized


Active/Passive Contraction Protocol

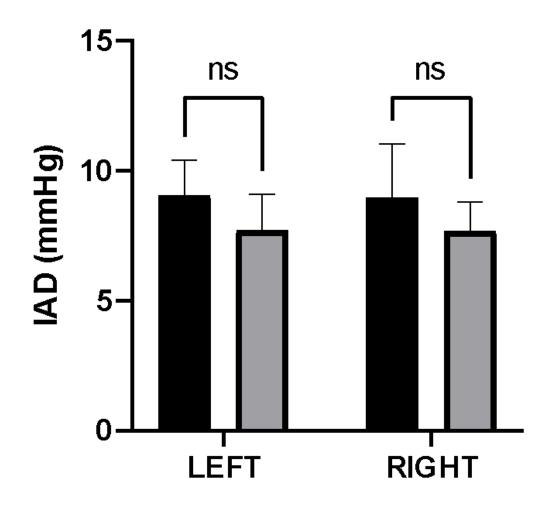
Methods- Visit Two

 Order of affected hand randomized

Time (min)

Data Analysis

- \Box IAD+, >10 mmHg IAD at rest
- □ IAD-, <10 mm Hg IAD at rest
- \square Descriptive statistics- calculated as mean \pm SEM
- □ A repeated-measures ANOVA was used to compare the relative IAD response to the CPT between IAD+ and IAD- individuals at rest

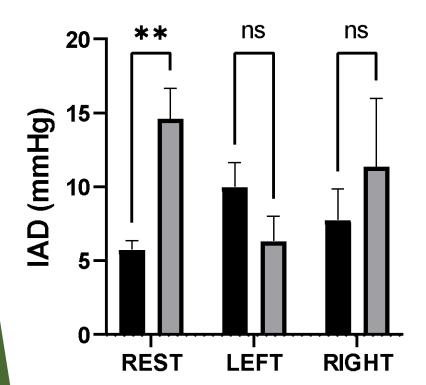

Participant Demographics - Active/Passive

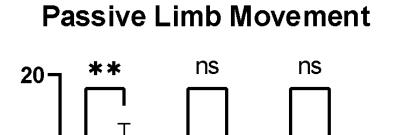
	IAD- (n=7; <10mmHg)	IAD+ (n=18; <u>></u> 10mmHg)
Cholestech Panel:		
Total Cholesterol (mg/dL)	193.1 ± 10.4	182.5 ± 10.3
High-Density Lipoprotein (mg/dL)	56.1 ± 4.0	55.9 ± 6.5
Low-Density Lipoprotein (mg/dL)	112.9 ± 7.9	108.9 ± 6.8
LDL/HDL Ratio	3.7 ± 0.3	3.5 ± 0.3
Blood Glucose (mg/dL)	90.6 ± 2.5	90.1 ± 1.9
Anthropometrics:		
Weight (kg)	77.0 ± 4.8	74.4 ± 4.2
Height (cm)	168.0 ± 2.6	168.6 ± 3.8
BMI (kg/m ²)	27.2 ± 1.5	26.2 ± 1.4
Fat-Free Mass (kg)	54.1 ± 2.8	56.5 ± 3.7
Body Fat Percentage (%)	29 ± 2.4	24 ± 3.4

Participant Demographics - CPT

	IAD- (n=11; <10mmHg)	IAD+ (n=12; <u>></u> 10mmHg)
Cholestech Panel:		
Total Cholesterol (mg/dL)	183.9 ± 11.2	201.2 ± 4.0
High-Density Lipoprotein (mg/dL)	53.8 ± 5.3	56.4 ± 2.4
Low-Density Lipoprotein (mg/dL)	96.9 ± 4.9	122.5 ± 3.1*
LDL/HDL Ratio	3.5 ± 0.3	3.7 ± 0.35
Blood Glucose (mg/dL)	91.2 ± 3.1	90.9 ± 2.8
Anthropometrics:		
Weight (kg)	73.8 ± 5.3	76.8 ± 2.7
Height (cm)	170.6 ± 3.4	165.5 ± 3.7
BMI (kg/m²)	25.1 ± 1.2	28.0 ± 1.7
Fat-Free Mass (kg)	55.7 ± 3.6	52.1 ± 2.1
Body Fat Percentage (%)	24 ± 1.6	31 ± 1.9

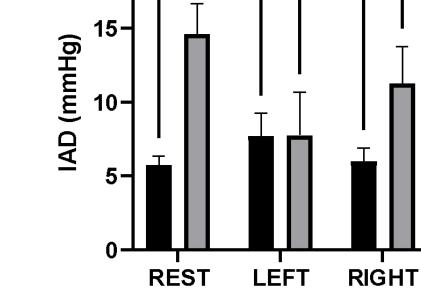
Results - Active/Passive



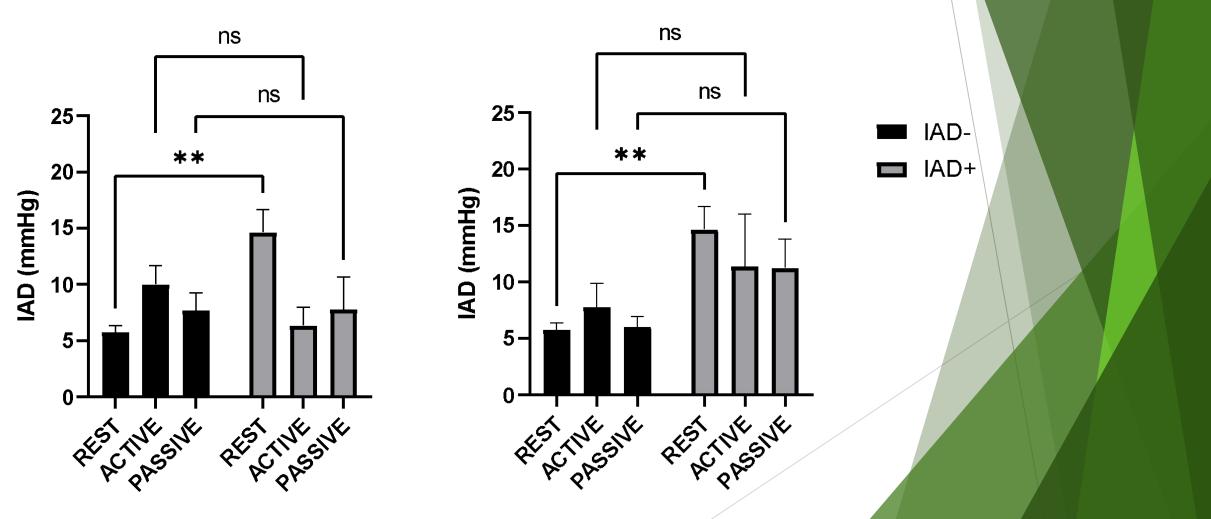


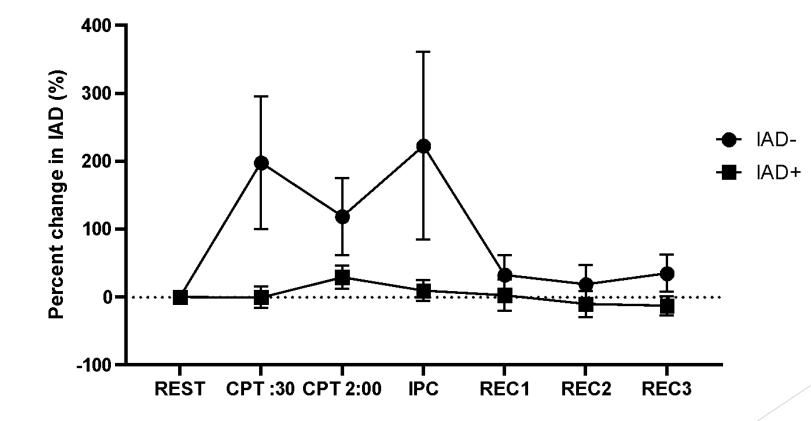
Passive Limb Movement

Results - Active/Passive


Active

IAD-


IAD+


Results - Active/Passive

LEFT ARM

RIGHT ARM

Results - CPT

Conclusions - Active/Passive

Both passive and active limb movement mediated IAD similarly in both IAD+ and IAD- participants

Conclusions - CPT

Similar to prior stimuli on the IAD response:
CPT augmented IAD response in IAD- individuals
IAD+ individuals had a blunted response to the CPT, possibly indicating that suggested anatomical bases, and physiological responses derived by sympathetic means, deserve further investigation as potential mechanisms behind resting and exercise IAD.

Acknowledgements

SRU Exercise Science Research Lab:Ben McEldowney, Seth Markle

Slippery Rock University/PASSHE Funding Sources
2020 Norton Scholarship for Undergraduate Research
Summer Collaborative Research Experience (SCORE)