

STEM vs. Non-STEM Course Performance During COVID Remote Learning in Higher Education

0.30

0.10

INTRODUCTION

<u>Objectives</u>

- Investigate how student performance was affected during the stages of COVID remote learning.
- Determine if the effects were similar for STEM courses and Non-STEM courses at the 300 level

<u>Data</u>

- Fall 2019 Spring 2021
- 300 level classes from various departments (see methodology for full list)
- 4000 rows of data
- 531 Different Courses
- Variables
 - SemesterCourse ID
 - Course Subject
 - Course Number
 - Final Grade
 - Student Count
 - Instruction MethodInstructional Method Description
- <u>Assumptions</u>

Courses unchanged over time except for instructional mode

- Grades BLANK, F, I, IN, NC, WL, X.
- means unsuccessful completion of the course
- Outcomes were unaffected by
- Course instructor
- Class size

METHODOLOGY

This project was IRB approved

 Data was organized into STEM and Non-STEM courses based on Slippery Rock program guide.

	Non-STEM		STEM	
Accounting	French	Physical & Health Education	Biology	Industrial & Systems Engineering
Arabic	Hospitality and Tourism Management	Philosophy	Chemistry	Mathematic s
Art	History	Political Science	Computer Science	Managemen t Information Systems
Business	Homeland Security	Psychology	Cognitive Science & Leadership	Nursing
Communication	Interdisciplinary Programs	Safety Management	Cybersecurity	Parks & Conservatio n
Criminology & Criminal Justice	Japanese	Secondary Education/Foundations of Education	Environmental Geoscience	Physics
Corporate Security	Management	Spanish	Engineering	Petroleum/N atural Gas Engineering
Dance	Marketing	Special Education	Exercise Science & Rehabilitation Science	Recreationa I Therapy
Economics	Military Science	Sport Management	Geography/Environmental Science	Social Work
English	Music	Theatre	Health Care Administration & Management	Statistics
Finance	Philanthropy, Nonprofit, Leadership & Public Administration		Health Science/Public Health	

Data cleaning

- Grades coded as 0 due to unsuccessful course completion: BLANK, F, I, IN, NC, WL, X.
- completion: BLANK, F, I, ICoded grades
- P = 2.1 to be coded uniquely since passing grade is at least a C. There was not enough information to say this grade was anything higher than a C.

Letter Grade	Numerical Grade
A	4
В	3
Р	2.1
С	2
D	1
F	0

- Removed variables after classification into STEM and Non-STEM:
 - Course ID
 - Course Subject
 - Course Number
 - Instruction Method
 - Instructional Method Description
- Restructured data
 - Separated data by semester
 - Created a count variable which was the total number of each letter grade over each semester broken into STEM and Non-STEM
 - Computed relative frequency variable for each semester for STEM and Non-STEM
 - New data set contained letter grades, counts for each semester broken into STEM and Non-STEM, and Relative Frequencies for each grade for each semester broken into STEM and Non-STEM.

Kelly Smith and Amanda Goodrick Slippery Rock University

Descriptive Analysis

- Frequencies
 - Initial Frequencies per letter grade for each semester (STEM and Non-STEM) were investigated
- Graphs
- Bar graphs of each semester's relative frequencies for STEM and Non-STEM
- Cluster Graphs
- Non-STEM and STEM each semester
- Non-STEM courses by semester
- STEM courses by semester.
- Inferences for Two Population Proportions H_0 : $\hat{p}_1 = \hat{p}_2$
 - o H_a : $\hat{p}_1 \neq \hat{p}_2$ if H_0 rejected, H_a : $\hat{p}_1 < \hat{p}_2$ or H_a : $\hat{p}_1 > \hat{p}_2$ based on direction of sample proportions

o Test statistic
$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}_p(1 - \hat{p}_p)}\sqrt{\left(\frac{1}{n_1}\right) + \left(\frac{1}{n_2}\right)}}$$
, where $\hat{p}_p = \frac{(x_1 + x_2)}{n_1 + n_2}$ with $\alpha = 0.05$

- Compare STEM and Non-STEM each semester
- Compare STEM and compare Non-STEM across all semesters with Fall 2019 as control
- Compare STEM and Non-STEM overall for all four semesters
- Two Sample t-test for means with equal variances assumed
 - o H_0 : $\mu_1 = \mu_2$ with $\alpha = 0.05$
 - H_a : $\mu_1 \neq \mu_2$
 - O Test statistic $t = \frac{\bar{x}_1 \bar{x}_2}{s_p \sqrt{1/n_1 + 1/n_2}}$ where $s_p = \sqrt{\frac{(n_1 1)S_1^2 + (n_2 1)S_2^2}{n_1 + n_2 + 1}}$ and $n_1 + n_2 + 1$
 - Test for equal average grade for all STFM and Non-STFM comparisons

RESULTS AND DISCUSSION

STEM

■ Non-STEM ■ STEM

Equal proportions of B,
C, and D. STEM had
more A and F while
Non-STEM had more
P. STEM and Non-
STEM have Equal
average grades in Fall
2019.

■Non-STEM ■ STEM

Equal proportions of A, B, C, and D. STEM
had more F and Non-
STEM had more P.
STEM and Non-STEM
have unequal average
grades in Spring 2020.

Equal proportions of A,

B, C, and F. STEM has

has more P. STEM and

more D. Non-STEM

and D. STEM has

more A and F while

and C. STEM and

average grades for

Spring 2021.

Non-STEM has more P

Non-STEM have Equal

	Fall 2020 Non-STEM n=6464	Fall 2020 STEM n=2285	Reject?	p-value	Conclusion
Α	55.45% 3584	54.40% 1243	No	0.3869	Equal
В	25.05% 1619	26.61% 608	No	0.1407	Equal
Р	1.71% 111	0% 0	Yes	0	NS > S
С	9.53% 616	9.45% 216	No	0.9144	Equal
D	2.48% 160	3.15% 72	Yes	0.04199	NS < S
F	5.79% 374	6.39% 146	No	0.2942	Equal
Two Sample t-test equal variances H_0 : $\mu_1 = \mu_2$					
Mean Std.Dev.	3.22 1.11	3.19 1.14	No	0.3423	Equal Average

	Spring 2021	Spring 2021			
	Non-STEM n=6135	STEM n=3032	Reject?	p-value	Conclusion
Α	55.40% 3399	57.85% 1754	Yes	0.0132	NS < S
В	24.50% 1503	22.69% 688	No	0.0562	Equal
Р	1.14% 70	0% 0	Yes	0	NS > S
С	10.17% 624	8.01% 243	Yes	0	NS > S
D	2.87% 176	2.51% 76	No	0.3184	Equal
F	5.92% 363	8.94% 271	Yes	0	NS < S
Two Sample t-test equal variances H_0 : $\mu_1 = \mu_2$					
Mean Std. Dev.	3.21 1.13	3.18 1.24	No	0.2947	Equal Average

	Fall 2019-Spring 2021 Non-STEM n=25133	Fall 2019-Spring 2021 STEM n=10422	Reject?	p-value	Conclusio n	
Α	55.20% 13874	56.21% 5858	No	0.0824	Equal	
В	25.19% 6331	24.53% 2557	No	0.1939	Equal	
Р	2.63% 662	0.92% 96	Yes	0	NS > S	
С	9.47% 2379	8.33% 868	Yes	0	NS > S	
D	2.08% 523	2.12% 221	No	0.8124	Equal	
F	5.43% 1364	7.89% 822	Yes	0	NS < S	
Two Sample t-test equal variances H_0 : $\mu_1 = \mu_2$						
Mean Std.Dev.	3.23 1.09	3.19 1.19	Yes	0.0038	Unequal Average	

Non-STEM have Equal average grades in Fall 2020.

Equal proportions of B

Overall, from Fall 2019 through Spring 2021, STEM students and Non-STEM students earned equal proportions of A, B, and D. Non-STEM students earned more P and C, and STEM students earned more F. Unequal average grades.

Non-STEM with Fall 2019 as control					
	Spring 2020	Fall 2020	Spring 2021		
Α	Increase	Increase	Increase		
В	Decrease	Decrease	Decrease		
Р	Increase	Decrease	Decrease		
С	Decrease	Decrease	Equal		
D	Decrease	Equal	Equal		
F	Increase	Increase	Increase		

In Spring 2020, Non-STEM students earned more A, P, and F and fewer B, C, D than Fall 2019.

In Fall 2020, Non-STEM students earned more A and F and fewer B, P and C than Fall 2019.

In Spring 2021, Non-STEM students earned more A and F, fewer B and P than Fall 2019. Students earned equal portion of C and D. All statistical conclusions were significant.

STEM with Fall 2019 as control					
	Spring 2020	Fall 2020	Spring 2021		
Α	Equal	Equal	Increase		
В	Decrease	Equal	Decrease		
Р	Increase	N/A	N/A		
С	Decrease	Equal	Decrease		
D	Decrease	Equal	Equal		
F	Increase	Equal	Increase		

In Spring 2020, STEM students earned more P and F, fewer B, C, and D, and equal portion of A than in Fall 2019. In Fall 2020, STEM students earned equal portions of A, B, C, D, and F as in Fall 2019.

In Spring 2021, STEM students earned more A and F, fewer B and C than Fall 2019. Students earned equal portion of D. No P grades were earned in Stem courses in the Spring 2021 academic semester.

All statistical conclusions were significant.

LIMITATIONS

- Data was letter grades more analysis could have been completed with quantitative percent grades, which are not accessible.
- Unable to incorporate other confounding factors that may have influenced course grades such as student health and student circumstances.
- Number of semesters available in data

CONCLUSION

The results of the two sample mean t-test for equal variances show that the average grades of 300-level STEM and Non-STEM courses are equal for Fall 2019, Fall 2020, and Spring 2021. This indicates that student grades in STEM courses were equivalent to student grades in Non-STEM courses in 300-level courses each of those three semesters, regardless of the modality of instruction. Additionally, the average grade was higher in Non-STEM courses than STEM courses during the Spring 2020 semester, indicating that STEM students were impacted more than Non-STEM students during the semester that instruction switched from in-person to online. In general, students in both STEM and Non-STEM courses earned more A and F grades throughout online learning and fewer average grades than the last in-person semester of Fall 2019. Prior to COVID-remote learning and during the fully online learning, STEM and Non-STEM student grades were not significantly impacted in comparison to one another each semester. Overall, remote learning did not significantly impact the average grade distribution for STEM and Non-STEM courses except during the semester of transitioning to online learning, where STEM grades were more negatively impacted.

FUTURE WORKS

- Compare pre-COVID online to during and post COVID online
- Same study comparing departments
- Investigate 100 and 200 level courses
- Investigate Graduate level courses