Coloring intersection points of line segments

Sam Lowery Department of Mathematics & Statistics

2022 Symposium for Student Research, Scholarship, and Creative Activity

Graphs

Complete graphs

Coloring a graph means coloring its vertices so that adjacent vertices get different colors

$\chi(G)$: smallest possible number of colors with which a graph G can be colored

$\chi(G)$: smallest possible number of colors with which a graph G can be colored

 $\chi(G)=3$

 $\chi(K_n)=n$

Set of line segments

Intersection points

w(M): most intersection points in a segment

Intersection points

Coloring a set of segments means coloring the intersection points so that no segment has

points with the same color.

 $\chi(M)$: smallest possible number of colors with which a set of segments M can be colored

 $\chi(M)$: smallest possible number of colors with which a set of segments M can be colored

 $\chi(M) = 5$

Let G be a graph consisting of n copies of K_n , every pair of which has at most one vertex in common. Then, $\chi(G) = n$.

 $\chi(G)$ cannot be less than n, since at least n colors are needed for each copy of K_n

Let G be a graph consisting of n copies of K_n , every pair of which has at most one vertex in common. Then, $\chi(G) = n$.

[Kang et al. 2021] announced a proof for large enough n

Let *M* be a set of *m* curves, each pair of which has at most one point in common. Then, $\chi(M) \leq m$.

Let *M* be a set of *m* curves, each pair of which has at most one point in common. Then, $\chi(M) \leq m$.

Let *M* be a set of *m* curves, each pair of which has at most one point in common. Then, $\chi(M) \leq m$.

Let *M* be a set of *m* curves, each pair of which has at most one point in common. Then, $\chi(M) \leq m$.

 $\chi(M)$ can be less than m.

Let *M* be a set of *m* segments. What's $\chi(M)$?

$w(M) \leq \chi(M) \leq |M|$

Need w(M) colors for the segment with w(M) intersections

Follows from proof of EFL Conjecture

 $w(M) \stackrel{\checkmark}{\leq} \chi(M) \stackrel{\checkmark}{\leq} |M|$

Need w(M) colors for the segment with w(M) intersections

Follows from proof of EFL Conjecture

easy to compute

 $w(M) \leq \chi(M) \leq |M|$

Complexity of $\chi(M)$

Computing $\chi(M)$ is NP-Complete, even if M is a set of segments where no five segments intersect in the same point.

Reduction using a special case of PLANAR GRAPH COLORING

Need w(M) colors for the segment with w(M) intersections

Follows from proof of EFL Conjecture

easy to compute

 $w(M) \leq \chi(M) \leq |M|$

Need w(M) colors for the segment with w(M) intersections

Follows from proof of EFL Conjecture

hard to compute

 $w(M) \leq \chi(M) \leq |M|$

easy to compute

Experimentally, $\chi(M)$ usually seems to be a lot closer to w(M) than to |M|.

• When is $\chi(M) = w(M)$?

- When is $\chi(M) = w(M)$?
- When is $\chi(M) = w(M) + 1$?

- When is $\chi(M) = w(M)$?
- When is $\chi(M) = w(M) + 1$?
- When is $\chi(M) = w(M) + 2$?

- When is $\chi(M) = w(M)$?
- When is $\chi(M) = w(M) + 1$?
- When is $\chi(M) = w(M) + 2$?
- Can $\chi(M) \ge w(M) + 3$?

Experimentally, $\chi(M)$ usually seems to be a lot closer to w(M) than to |M|.

- When is $\chi(M) = w(M)$?
- When is $\chi(M) = w(M) + 1$?

Characterizations are hard to derive

- When is $\chi(M) = w(M) + 2?_{-}$
- Can $\chi(M) \ge w(M) + 3$?

- Hard to find one

Experimentally, $\chi(M)$ usually seems to be a lot closer to w(M) than to |M|.

- When is $\chi(M) = w(M)$?
- When is $\chi(M) = w(M) + 1$?
- When is $\chi(M) = w(M) + 2?$
- Can $\chi(M) \ge w(M) + 3$?

What is $\chi(M)$ for M with special structure?

Easier to answer

Some characterizations

"circuit-free arrangements"

"grid-like arrangements"

 $\chi(M) = w(M) | \chi(M) = w(M)$

"bisected polygon arrangements"

$$\chi(M) = w(M) + 2$$

Some characterizations

"standard drawing of $K_{n,n}$ "

 $\chi(M) = |\{(x, y): 1 \le x, y \le n, \gcd(x, y) = 1\}| + 2$

Approach for

• Wrote program to generate instance of size *n*

- Wrote program to generate instance of size *n*
- Computed optimal coloring for n = 2,3, ..., 10

- Wrote program to generate instance of size *n*
- Computed optimal coloring for n = 2,3, ..., 10
- Looked up sequence of chromatic numbers in Online Encyclopedia on Integer Sequences

- Wrote program to generate instance of size *n*
- Computed optimal coloring for n = 2,3, ..., 10
- Looked up sequence of chromatic numbers in Online Encyclopedia on Integer Sequences
- Noticed it almost matches one sequence

- Wrote program to generate instance of size *n*
- Computed optimal coloring for n = 2,3, ..., 10
- Looked up sequence of chromatic numbers in Online Encyclopedia on Integer Sequences
- Noticed it almost matches one sequence
- Modified formula for that sequence to match exactly

- Wrote program to generate instance of size *n*
- Computed optimal coloring for n = 2,3, ..., 10
- Looked up sequence of chromatic numbers in Online Encyclopedia on Integer Sequences
- Noticed it almost matches one sequence
- Modified formula for that sequence to match exactly
- Analytically proved formula for arbitrary n

- Wrote program to generate instance of size *n*
- Computed optimal coloring for n = 2,3, ..., 10
- Looked up sequence of chromatic numbers in Online Encyclopedia on Integer Sequences
- Noticed it almost matches one sequence
- Modified formula for that sequence to match exactly
- Analytically proved formula for arbitrary *n*
 - Proof is based on showing that sets of intersections are grouped at different y-coordinates, and points in these levels get the same color, which is necessary and sufficient

- Wrote program to generate instance of size *n*
- Computed optimal coloring for n = 2,3, ..., 10
- Looked up sequence of chromatic numbers in Online Encyclopedia on Integer Sequences
- Noticed it almost matches one sequence
- Modified formula for that sequence to match exactly
- Analytically proved formula for arbitrary *n*
 - Proof is based on showing that sets of intersections are grouped at different y-coordinates, and points in these levels get the same color, which is necessary and sufficient

Longest diagonal segments
intersect all others, so w(M)
colors are necessary, and also sufficient

Some characterizations

,

If *M* is a segment cactus different from then $\chi(M) \leq |M| - 1$.

What about lines?

In a set *M* of lines, every pair of non-parallel lines intersect

 $w(M) \leq \chi(M) \leq |M|$ still holds

What about lines?

The following are equivalent:

- If *M* is a set of *m* lines drawn in the plane, then *M* has a coloring with *m* colors.
- If *M* is a set of *m* segments drawn in the plane, then *M* has a coloring with *m* colors.

What about lines?

The following are equivalent:

- If *M* is a set of *m* lines drawn in the plane, then *M* has a coloring with *m* colors.
- If *M* is a set of *m* segments drawn in the plane, then *M* has a coloring with *m* colors.

An analogous statement does not necessarily hold for subfamilies of segments/lines

• Randomly noticed one small example

$$\chi(M) = w(M) + 2$$

• Randomly noticed one small example

 $\chi(M) = w(M) + 2$

• Noticed another that was similar to it

 $\chi(M) = w(M) + 2$

• Randomly noticed one small example

 $\chi(M) = w(M) + 2$

• Noticed another that was similar to it

 $\chi(M) = w(M) + 2$

- Tried to extend the pattern
- Harder to verify large examples by hand

- Wrote integer program to help verification
- Used program to check more examples
- Saw $\chi(M) = w(M) + 2$ holds for all of them
- Analytically proved formula
 - Proof is based on converting the set of segments to a graph, finding a coloring that always works, and showing that no smaller coloring exists

Future work

- Find a set with $\chi(M) \ge w(M) + 3$ or show this can't exist.
- Run more extensive computational experiments

Future work

- Find a set with $\chi(M) \ge w(M) + 3$ or show this can't exist.
- Run more extensive computational experiments

Thank you