




Abstract 

 Artificial neural networks are a trending topic in computer science and machine 

learning. Rooted in today’s current understanding of how the brain works, artificial 

neural networks allow machines the capability to essentially learn and decide for 

themselves. Improvements in technology have provided the means for a proposition 

between finite automata and neural activity to be realized. Extensive research has been 

conducted to understand the true potential of this realization, and the results of such 

research show great promise. To better understand artificial neural networks, their 

fundamental properties were explored and applied to an existing solution to a problem on 

OpenAI’s website called CartPole-v0. 
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Understanding the Nervous System 

 Inside our head is the most complex system known to mankind. Suspended 

comfortably inside our skull, our brain is currently processing vast amounts of 

information from various internal and external sources to keep us conscious. It defines 

who each of us is as a person and what we are as a species. It controls everything about 

us and is responsible for what has been done, what will be done, and what will continue 

to be done as long as humans are around. A mass of tissue the size of approximately two 

fists, weighing anywhere between two and a half to three pounds is everything. 

The brain is an instrumental component of the nervous system. The human 

nervous system is an incredibly elaborate collection of nerves stemming from our brain 

that expands to every part of the body [1]. The central nervous systems primary function 

is to send signals from one part of the body to another and receive some sort of feedback. 

The way the nervous system does this is through special cells known as neurons. Neurons 

are unique from other cells in a variety of ways, but the most noteworthy difference is the 

ability to communicate through a space called a synapse. The synapse is a structure that 

allows neurons to pass signals amongst each other via electrical currents or with 

chemicals called neurotransmitters [1]. The ability of these cells to communicate using 

electrical signals was a momentous discovery made by observing the structure of nerves 

underneath a microscope. 

Figure 1 is a diagram illustrating the key features of a standard neuron. Emanating 

from the cell body the dendrites are seen; long finger-like structures that branch out 

creating dendritic trees. This dendritic tree is responsible for receiving signals sent from 
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the axons of other neurons and determining whether the neuron should send a signal 

down its own axon. 

Figure 1. Standard Neuron  

Neurons are very efficient at transferring signals and processing feedback. Every 

neuron comes equipped with a membrane that maintains a voltage gradient. This charged 

membrane possessed by the neuron is electrically excitable and thus is capable of being 

influenced by action potential. 

 A neuron is analogous to a battery. By itself, a battery is nothing more than a 

collection of chemicals holding stored energy just waiting to be used. In the region 

surrounding the neuron, positive sodium ions are present while positive potassium ions 

are enclosed inside the neuron. The presence of more sodium ions outside the neuron 

than potassium ions inside the neuron means the net charge of the neuron is negative. A 

neuron in this state is known as polarized [2]. Figure 2 shows a polarized neuron that is 

electrically charged by proteins called the sodium-potassium pumps. They ride the 

membrane of the neuron pumping an unequal amount of sodium and potassium ions to 

and from the neuron. This uneven distribution of ions creates the electrical gradient. To 
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even out this gradient, ions must be able to pass from the 

environment into the neuron through channels in the 

membrane. These channels open from various stimuli 

depending on the primary function of the neuron. To 

send a significant signal down an axon, there must be a 

powerful trigger that opens the numerous voltage-gated 

channels. If the trigger crosses a certain threshold, then 

the action potential is realized, and ions flood the neuron rapidly depolarizing it. That 

local change in current travels down the axon to some designated neuron that will 

respond accordingly [2]. The neuron will eventually return to a polarized state via the 

sodium-potassium pumps and the cycle can be repeated.  

Studies of the human brain have estimated that there are over 86 billion neurons 

present [3]. The amount of interconnectivity amongst neurons in the typical human 

creates a network of unimaginable complexity. This network of communication is where 

the true power of the neuron lies. Between each junction of axon and dendrite among 

connected neurons exists an ever so minute gap known as a synapse. Anywhere between 

20 to 40 nanometers across, the synapse is a fundamental element of neurotransmission 

[3]. Communication is achieved when a presynaptic neuron passes a signal across the 

synapse to a postsynaptic neuron. Chemical synapses use neurotransmitters located in the 

presynaptic membrane of the neuron to bind to receptors located on the membrane of the 

postsynaptic neuron. Chemical synapses have a variety of classifications depending on 

the type of neurons at play. Neurotransmitters themselves are vastly complex and their 

Figure 2. Sodium-Potassium Pumps 



Law 4 

 

effects on the post synaptic neuron are intricate. Chemical synapses are responsible for a 

major portion of activity in a typical biological neural network.  

Electrical synapses behave in a more straightforward manner. Thus, these 

electrical synapses are inherently simpler than chemical synapses. The exclusion of 

neurotransmitters from the communication process means that electrical synapses are less 

varied and more resistant to external influences. Electrical synapses transmit signals 

almost instantly, making them perfect for scenarios in which a rapid response is required. 

Transmission speeds are so fast that neurons can even fire synchronously. Electrical 

synapse responses occur quickly, are bidirectional if need be, and produce simple 

behavior [4].  

The rapid development of technology has unearthed a striking link between neural 

behavior and the computational theory of finite automata. Could a machine be able to 

model neurological activity? To answer that question, artificial neural networks were 

conceptualized by Walter Pitts and Warren McCulloch in 1943. 

Foundations of Artificial Neural Networks 

The evolution of artificial neural networks traces its roots to a paper written by 

Warren McCulloch and Walter Pitts. “A Logical Calculus of the Ideas Immanent in 

Nervous Activity” laid the foundations from which neural networks were built. 

McCulloch and Pitts demonstrated that “neural events and the relations among them can 

be treated by means of propositional logic [5].” They found that the behavior of every net 

without circles can be defined in their logical calculus, but certain key assumptions 
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needed to be made. These are the following assumptions made on neural nets that do not 

cycle (without circles): 

1. The activity of the neuron is an “all-or-none” process. 

2. A certain fixed number of synapses must be excited within the period of latent 

addition in order to excite a neuron at any time, and this number is independent of 

previous activity and position on the neuron. 

3. The only significant delay within the nervous system is synaptic delay. 

4. The activity of any inhibitory synapse absolutely prevents excitation of the neuron 

at that time. 

5. The structure of the net does not change with time. 

To summarize the following assumptions, artificial neural nets are made up of an 

arbitrary amount of nodes (neurons) whose network structure is immutable. The only 

transmission delay between nodes is synaptic, which is the relative distance between 

nodes. The activity of an individual node is all or nothing. A node that has been triggered 

by the network either transmits or prohibits subsequent signals. There are no partial 

transmissions or partial blockages; all activity after excitation is absolute.From these 

cardinal assumptions, Pitts and McCulloch used extensive calculus to translate neural 

activity into some relatively straightforward mathematics. Many papers have been 

Figure 3. Artificial Neuron 
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published and much research has been done regarding different network models, 

mathematical properties, and neural anomalies since the Pitts-McCulloch paper. 

However, the interest of this paper lies solely in understanding and applying a basic 

artificial neural network with only the essential mathematics needed to solve a problem. 

Figure 3 illustrates the best way to understand the model and the mathematics used in an 

artificial neural network. 

Figure 3 is the depiction of a standard node/neuron in an artificial neural network. 

Neurons begin with an arbitrary number of inputs represented by x1 through xn. The origin 

of the inputs varies depending on the location of the neuron within the network. If the 

neuron is part of the input layer, or the beginning layer of the network, the input is 

typically provided by a user of the network. If the neuron is not part of the input layer, the 

inputs are provided or inhibited by neurons in a prior layer. The values of these inputs are 

then multiplied by a weight represented by w1 through wn in Figure 3. Weights will be 

discussed in further detail later. After all the inputs have been multiplied by their 

respective weights, the determined values of all inputs will then be summed (Summer in 

Figure 3). To this sum, a bias will also be added. Like weights, a bias will be discussed 

later. The first assumption established earlier was that the activity of a neuron is all or 

nothing. When all the input values are determined and summed along with the bias, that 

subsequent value could be any possible number. To realize this assumption, the summed 

value will be passed through an activation function labeled Threshold unit in Figure 3. 

This activation function will determine if the neuron fires or not. 
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A typical activation function is a sigmoid function. The sigmoid function is 

bounded, differentiable, and is defined for all real input values. Expressed as  
1

1+𝑒−𝑥
 

the sigmoid function will take the value of the neuron’s sum, x, and produce a number 

between 0 and 1. This function works extremely well as an activation function since no 

matter what real value the summation produces, once it’s passed through the sigmoid 

function, only a value between 0 and 1 will be produced. This translates accordingly to 

the neuron firing or not. 

Nodes of an artificial neural network are then grouped into layers. These layers 

are known as the input layer, one or more hidden layers, and an output layer. The nodes 

in each layer are connected to each node in a subsequent layer creating a network such as 

Figure 4. 

Figure 4. Artificial Neural Network 
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Teaching with Mathematics 

Perhaps the most charming aspect of artificial neural networks is their capability 

to “learn”. However, the term “learn” is rather misleading. With the increased amount of 

automation in today’s workforce, giving machines the ability to learn can be a concerning 

thought. Fortunately for us, training an artificial neural network is more akin to teaching a 

machine to produce correct results rather than it consciously learning on its own. This is 

accomplished by some extremely clever calculus and linear algebra. 

Teaching an artificial neural network is fundamentally a challenge in 

optimization. The network starts with input data and some randomly generated weights 

and biases. These random weights and biases will at first produce results that are 

unpredictable and largely incorrect. To tweak these weights and biases, a cost function is 

defined. The purpose of the cost function is to measure how well the network is doing 

with the current weights and biases. The cost function will take the current weights and 

biases as its input and produce a single output value. This single output value is an 

indication of how well the network is performing. When this output is large, the current 

values of the weights and biases are causing the network to perform poorly. Lowering the 

output value of the cost function is done by minimizing the cost function. By minimizing 

the cost function, an artificial neural network learns. 

Minimizing the cost function is accomplished by gradient descent. If a multi-

variable function F(x), in our case the cost function, is differentiable at some point i.e. the 

random weights and biases defined, then F(x) will decrease fastest in the direction of the 

negative gradient of F [6]. What is essentially transpiring is the slope of the cost function 

is determined at some instance and the goal is to find out what direction to travel to get 



Law 9 

 

that slope as flat as possible. Given the current output of the cost function, adjustments 

are made to the weights and biases and another output is produced. That output is then 

analyzed, the weights and biases are adjusted further, and the direction to travel is 

determined again. Repeating this process hundreds, thousands, even millions of times 

refines the weights and biases to optimal values; thus, an artificial neural network is 

trained. 

 Another important topic is how the gradient of the cost function is computed. This 

is known as backpropagation. In 1986, “Learning representations by back-propagating 

errors” by David Rumelhart, Geoffrey Hinton, and Ronald Williams produced a learning 

procedure coined backpropagation that illustrated how quickly the output of the cost 

function changes with respect to altering the weights and biases of a network [7]. 

Alterations to weights and biases have profound effects on the network that ultimately 

ripple out and change aspects of the network as a whole. A minor adjustment in one area 

will indefinitely alter other areas. The underlying calculus behind it is well beyond the 

scope of this paper, but it deals with the partial derivative of the cost function with 

respect to the weights and biases. The important aspect to take away from 

backpropagation is that certain weights and biases are more influential on the network 

than others. 

OpenAI and “CartPole-v0” 

 In 2015, Elon Musk, the CEO of SpaceX, along with a handful of other investors 

pledged over $1 billion in funds towards the development of artificial intelligence (AI). 

This manifested itself into a non-profit organization known as OpenAI. Musk believed at 

the time that AI was humanity’s greatest threat, so the goal of OpenAI was simple; 
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provide a free, community-based sanctuary where AI could be developed and researched 

with a focus on “positive human impact” [8]. He has since left the organization due to 

possible conflicts of interest, but OpenAI is still thriving. In 2016, OpenAI released its 

first platform for machine learning called “OpenAI Gym”. 

Gym is essentially a toolkit that provides users with problems called 

environments. Users can then freely test and develop learning algorithms on a plethora of 

environments. These environments make no assumptions about algorithms or model 

structures, share a common interface allowing for general algorithms to be ported 

between environments, and are compatible with any numerical computation library [9]. 

The environments vary in complexity, spanning from simple locomotion simulations to 

full on Atari emulations like Ms. Pacman and Pitfall. All the environments have a goal 

which serves as a purpose for training models. Users are then able to freely post their 

solution to the OpenAI website to show off how effective their training methods were. 

The environment chosen for this paper is known as “CartPole-v0”. The problem 

was derived from a paper titled “Neuronlike Adaptive Elements That Can Solve Difficult 

Learning Control Problems” written by researchers of the Institute of Electrical and 

Electronics Engineers (IEEE) [10]. It begins with a pole attached to a cart which moves 

along a frictionless path. The pole begins in the upright position and is bound to the cart 

by an un-actuated joint i.e. it won’t move unless a force is acted upon it. The goal is 

simple; prevent the pole from falling over. If the pole is more than 15º from vertical or 

the cart has moved more than 2.4 units from the center, then the game is over. 
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“Cartpole-v0” Solution in Python 

 Harrison Kinsley, who will be referred to from now on by his online pseudonym 

Sentdex, is a self-taught programmer and entrepreneur that has created numerous 

websites and YouTube videos dedicated to educating others on a variety of topics 

regarding the popular programming language Python. Sentdex’s resources on the topic of 

artificial neural networks have been invaluable throughout this research process and 

combing through his code was a delight. His code served as a foundation from which this 

solution was built, and the many hours spent watching his videos and reading his website 

has been a prime inspiration for this solution. The code is separated into three distinct 

methods; one for collecting training data, one for defining the neural network model, and 

one for training the model. All of this is made possible by three Python libraries; gym, 

numpy, and tflearn [11]. 

 The first method training_games() creates a set amount of games, plays the 

games with random action input, and stores all the necessary data collected from each 

game session. This method utilizes gym to create the “CartPole-v0” environment and 

manage the data collection. A score_requirement is created so that information is 

only collected from games with optimal scores. This is necessary to ensure the neural 

network is being trained with the best possible data collected. Another important note 

about this method is that it converts the collected game data into what is known as a one-

hot format. The cart in this environment can only move left or right. If it chooses to move 

right, then that choice is ‘hot’. It’s very similar to binary in which a one is ‘hot’ and a 

zero is ‘cold’. The data is encoded in this manner so that it can be easily translated by the 

neural network later. 
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 The next method, neural_network_model, takes one parameter, 

input_size, which is used to create the input layer for the neural network. tflearn 

utilizes two methods, fully_connected and dropout to define and create the 

entire network instead of manually creating this data structure from scratch. Each line of 

fully_connected is passed the size (number of nodes in the layer) and the type of 

activation function used. dropout is passed the object which invokes 

fully_connected and then the keep probability. The keep probability is a threshold 

which each single node must cross to activate. The final fully_connected 

establishes the output layer and a part of the cost function. All of this is then passed to a 

DNN method which wraps up creation of the network and stores it in an object called 

model.  

 The final method train_model is admittedly convoluted, but it uses the 

numpy library to perform matrix manipulation on the training data and essentially 

performs reinforcement training. With two lists, one X, one Y, train_model acts like 

a cost function by comparing the two lists, one being what was observed, the other being 

what should have been observed, and performing alterations to the weights and biases 

based on the cost of the differences. 

 By calling all three of these methods, the network is built, provided data, and 

subsequently trained. All that is left is to see how well it performs by invoking the 

environment again and allowing the network to predict what actions to take. “CartPole-

v0” is considered solved if the average score is over 195 across 100 trials. With samples 
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from 100,000 training games and a score requirement of 100, this program averages a 

score of 200 and thus is considered solved. 

Solution Code and Conclusion 

 Now that technology has finally caught up to theory, artificial neural networks are 

becoming a fascinating paradigm to follow. A team at OpenAI created a bot for the 

popular game Dota 2 that trained entirely against itself for roughly three months. It was 

then released upon professional players in a one-on-one scenario and crushed each and 

every one of them [12]. A bot had developed greater skill in three months than these 

players had developed over the course of years. MNIST (Modified National Institute of 

Standards and Technology) created a substantial database of pixel data from which 

networks have trained from in order to recognize handwritten digits. There are even 

reports of networks being able to steer vehicles, recognize faces, and even diagnose 

certain cancers based on cell shape information. 

 In a world where information and data are everything, artificial neural networks 

will indefinitely find a niche in future computing. Although artificial neural networks 

have been criticized for the inability to solve computationally difficult problems and the 

need for massive amounts of data/computing power to train, they should not be 

underestimated or discarded. It appears artificial neural networks are simply a piece of 

the much larger puzzle of technological enlightenment. OpenAI’s Dota 2 bot has shown 

that artificial neural networks can easily surpass the capabilities of a human. The future 

of artificial neural networks is as mystifying as it is potentially horrifying, but it certainly 

is incredible what technology is capable of. 
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Code Appendix 

import gym              #Toolkit for learning algorithms 

https://github.com/openai/gym    

import random           #Pseudo-random number module 

https://docs.python.org/3.4/library/random.html 

import numpy as np      #Package for scientific computing 

http://www.numpy.org/ 

import tflearn          #Deep learning library from Tensorflow 

https://github.com/tflearn/tflearn 

 

from tflearn.layers.core import input_data, dropout, fully_connected     

from tflearn.layers.estimator import regression 

from statistics import mean, median 

from collections import Counter 

 

#Learning rate of neural network 

LR = 1e-3 

 

#Define our environment for the network, initialize it 

environment = gym.make('CartPole-v0') 

environment.reset() 

 

#Timesteps for environment 

time_steps = 500 

 

#Keep the data from games with this score or higher 

score_requirement = 70 

 

#Number of initial games played for training data 

initial_games = 1000 

 

#Target number of timesteps 

goal_steps = 500 

 

#Play some games with random behavior for training data 

def training_games(): 

 

    #[Observations, Moves] 

    training_data = [] 

     

    #Every score achieved in training games 

    scores = [] 

     

    #Scores that met our requirements 

    accepted_scores = [] 

     

    #Begin simulating training games 

    for _ in range(initial_games): 

         

        score = 0 

         

        #[Cart Position, Cart Velocity, Pole Angle, Pole Velocity at 

Tip] 

        game_memory = [] 
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        #List containing each value of the previous observation 

        prev_observation = [] 

         

        #environment.render() 

 

        #For each time step, do a random action 

        for _ in range(time_steps): 

         

            #Actions are 0 (push left) or 1 (push right) 

            action = environment.action_space.sample() 

             

            ''' 

            Step returns 4 values: observation(object), reward(float) 

            done(boolean), and info(dictionary). This is the agent-

environment 

            loop. Each time step, the agent chooses and action and the 

            environment returns an observation and a reward 

            ''' 

            observation, reward, done, info = environment.step(action) 

             

            #If our previous observation was successful 

            if len(prev_observation) > 0: 

                 

                #Append to game_memory the previous observation 

                #and the action taken by the agent 

                game_memory.append([prev_observation, action]) 

             

             

            prev_observation = observation 

            score+=reward 

             

            #If done returns true, the game has finished 

            if done:  

                break 

 

         

  #If a score reached our score requirement 

        if score >= score_requirement: 

         

            #Add it to the list of accepted scores 

            accepted_scores.append(score) 

             

            #Convert game_memory to one-hot format for output layer 

            for data in game_memory: 

             

                if data[1] == 1: 

                 

                    #Action agent took (right) 

                    output = [0,1] 

                     

                elif data[1] == 0: 

                 

                    #Action agent took (left) 

                    output = [1,0] 

                     

                #Store data from training games into training_data list 

                training_data.append([data[0], output]) 
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        environment.reset() 

        scores.append(score) 

         

    ''' 

    Use to view stats about training data 

    print('Highest score:', max(scores)) 

    print('Average accepted score:', mean(accepted_scores)) 

    print('Median score for accepted scores:', median(accepted_scores)) 

    print(Counter(accepted_scores)) 

    ''' 

     

    return training_data 

 

training_games() 

    

#Create model for neural network 

def neural_network_model(input_size): 

 

    network = input_data(shape=[None, input_size, 1], name='input') 

 

    network = fully_connected(network, 64, activation='relu') 

    network = dropout(network, 0.8) 

 

    network = fully_connected(network, 128, activation='relu') 

    network = dropout(network, 0.8) 

 

    network = fully_connected(network, 256, activation='relu') 

    network = dropout(network, 0.8) 

 

    network = fully_connected(network, 128, activation='relu') 

    network = dropout(network, 0.8) 

 

    network = fully_connected(network, 64, activation='relu') 

    network = dropout(network, 0.8) 

 

    network = fully_connected(network, 2, activation='softmax') 

    network = regression(network, optimizer='adam', learning_rate=LR, 

loss='categorical_crossentropy', name='targets') 

    model = tflearn.DNN(network, tensorboard_dir='log') 

 

    return model 

 

 

 

 

def train_model(training_data, model=False): 

 

    #Reshaping training data with numpy (not really sure) 

    X = np.array([i[0] for i in training_data]).reshape(-

1,len(training_data[0][0]),1) 

     

    #Filling Y with target data 

    Y = [i[1] for i in training_data] 

 

    if not model: 

        model = neural_network_model(input_size = len(X[0])) 
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    ''' 

    This model.fit passes 4 parameters: 

    1: X input data as a dictionary 

    2: Y target data to train model 

    3: Number of epochs (backpropagation after each epoch) 

    4: Displays accuracy at every step 

    ''' 

     

    model.fit({'input': X}, {'targets': Y}, n_epoch=7, 

show_metric=True) 

    return model 

 

#Perform training_games and subsequent training 

training_data = training_games() 

model = train_model(training_data) 

 

#Lists for new scores and choices 

#made by the model 

scores = [] 

choices = [] 

 

#Functions similarly to training_games 

for each_game in range(100): 

 

    score = 0 

    game_memory = [] 

    prev_obs = [] 

    environment.reset() 

     

    for _ in range(goal_steps): 

     

        #environment.render() 

 

         

  #Start game off with random action 

        if len(prev_obs) == 0: 

         

            action = random.randrange(0,2) 

         

        #Otherwise use model's prediction 

        else: 

         

            action = np.argmax(model.predict(prev_obs.reshape(-

1,len(prev_obs),1))[0]) 

 

        #Save action taken by model 

        choices.append(action) 

                 

        new_observation, reward, done, info = environment.step(action) 

        prev_obs = new_observation 

        game_memory.append([new_observation, action]) 

        score+=reward 

         

        if done: break 

 

    scores.append(score) 
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#Useful stats for post training 

print('Average Score:',sum(scores)/len(scores)) 

print('choice 1:{}  choice 

0:{}'.format(choices.count(1)/len(choices),choices.count(0)/len(choices

))) 
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