

Abstract

 Artificial neural networks are a trending topic in computer science and machine

learning. Rooted in today’s current understanding of how the brain works, artificial

neural networks allow machines the capability to essentially learn and decide for

themselves. Improvements in technology have provided the means for a proposition

between finite automata and neural activity to be realized. Extensive research has been

conducted to understand the true potential of this realization, and the results of such

research show great promise. To better understand artificial neural networks, their

fundamental properties were explored and applied to an existing solution to a problem on

OpenAI’s website called CartPole-v0.

Table of Contents

Understanding the Nervous System………………………………………………………1

Foundation of Artificial Neural Networks………………………………………………...4

Teaching with Mathematics…………………………………………………………….....8

OpenAI and “Cartpole-v0”………………………………………………………………..9

“Cartpole-v0” Solution in Python………………………………………………………..11

Solution Code and Conclusion…………………………………………………………...13

Code Appendix…………………………………………………………………………..14

References……………………………………………………………………………….19

Law 1

Understanding the Nervous System

 Inside our head is the most complex system known to mankind. Suspended

comfortably inside our skull, our brain is currently processing vast amounts of

information from various internal and external sources to keep us conscious. It defines

who each of us is as a person and what we are as a species. It controls everything about

us and is responsible for what has been done, what will be done, and what will continue

to be done as long as humans are around. A mass of tissue the size of approximately two

fists, weighing anywhere between two and a half to three pounds is everything.

The brain is an instrumental component of the nervous system. The human

nervous system is an incredibly elaborate collection of nerves stemming from our brain

that expands to every part of the body [1]. The central nervous systems primary function

is to send signals from one part of the body to another and receive some sort of feedback.

The way the nervous system does this is through special cells known as neurons. Neurons

are unique from other cells in a variety of ways, but the most noteworthy difference is the

ability to communicate through a space called a synapse. The synapse is a structure that

allows neurons to pass signals amongst each other via electrical currents or with

chemicals called neurotransmitters [1]. The ability of these cells to communicate using

electrical signals was a momentous discovery made by observing the structure of nerves

underneath a microscope.

Figure 1 is a diagram illustrating the key features of a standard neuron. Emanating

from the cell body the dendrites are seen; long finger-like structures that branch out

creating dendritic trees. This dendritic tree is responsible for receiving signals sent from

Law 2

the axons of other neurons and determining whether the neuron should send a signal

down its own axon.

Figure 1. Standard Neuron

Neurons are very efficient at transferring signals and processing feedback. Every

neuron comes equipped with a membrane that maintains a voltage gradient. This charged

membrane possessed by the neuron is electrically excitable and thus is capable of being

influenced by action potential.

 A neuron is analogous to a battery. By itself, a battery is nothing more than a

collection of chemicals holding stored energy just waiting to be used. In the region

surrounding the neuron, positive sodium ions are present while positive potassium ions

are enclosed inside the neuron. The presence of more sodium ions outside the neuron

than potassium ions inside the neuron means the net charge of the neuron is negative. A

neuron in this state is known as polarized [2]. Figure 2 shows a polarized neuron that is

electrically charged by proteins called the sodium-potassium pumps. They ride the

membrane of the neuron pumping an unequal amount of sodium and potassium ions to

and from the neuron. This uneven distribution of ions creates the electrical gradient. To

Law 3

even out this gradient, ions must be able to pass from the

environment into the neuron through channels in the

membrane. These channels open from various stimuli

depending on the primary function of the neuron. To

send a significant signal down an axon, there must be a

powerful trigger that opens the numerous voltage-gated

channels. If the trigger crosses a certain threshold, then

the action potential is realized, and ions flood the neuron rapidly depolarizing it. That

local change in current travels down the axon to some designated neuron that will

respond accordingly [2]. The neuron will eventually return to a polarized state via the

sodium-potassium pumps and the cycle can be repeated.

Studies of the human brain have estimated that there are over 86 billion neurons

present [3]. The amount of interconnectivity amongst neurons in the typical human

creates a network of unimaginable complexity. This network of communication is where

the true power of the neuron lies. Between each junction of axon and dendrite among

connected neurons exists an ever so minute gap known as a synapse. Anywhere between

20 to 40 nanometers across, the synapse is a fundamental element of neurotransmission

[3]. Communication is achieved when a presynaptic neuron passes a signal across the

synapse to a postsynaptic neuron. Chemical synapses use neurotransmitters located in the

presynaptic membrane of the neuron to bind to receptors located on the membrane of the

postsynaptic neuron. Chemical synapses have a variety of classifications depending on

the type of neurons at play. Neurotransmitters themselves are vastly complex and their

Figure 2. Sodium-Potassium Pumps

Law 4

effects on the post synaptic neuron are intricate. Chemical synapses are responsible for a

major portion of activity in a typical biological neural network.

Electrical synapses behave in a more straightforward manner. Thus, these

electrical synapses are inherently simpler than chemical synapses. The exclusion of

neurotransmitters from the communication process means that electrical synapses are less

varied and more resistant to external influences. Electrical synapses transmit signals

almost instantly, making them perfect for scenarios in which a rapid response is required.

Transmission speeds are so fast that neurons can even fire synchronously. Electrical

synapse responses occur quickly, are bidirectional if need be, and produce simple

behavior [4].

The rapid development of technology has unearthed a striking link between neural

behavior and the computational theory of finite automata. Could a machine be able to

model neurological activity? To answer that question, artificial neural networks were

conceptualized by Walter Pitts and Warren McCulloch in 1943.

Foundations of Artificial Neural Networks

The evolution of artificial neural networks traces its roots to a paper written by

Warren McCulloch and Walter Pitts. “A Logical Calculus of the Ideas Immanent in

Nervous Activity” laid the foundations from which neural networks were built.

McCulloch and Pitts demonstrated that “neural events and the relations among them can

be treated by means of propositional logic [5].” They found that the behavior of every net

without circles can be defined in their logical calculus, but certain key assumptions

Law 5

needed to be made. These are the following assumptions made on neural nets that do not

cycle (without circles):

1. The activity of the neuron is an “all-or-none” process.

2. A certain fixed number of synapses must be excited within the period of latent

addition in order to excite a neuron at any time, and this number is independent of

previous activity and position on the neuron.

3. The only significant delay within the nervous system is synaptic delay.

4. The activity of any inhibitory synapse absolutely prevents excitation of the neuron

at that time.

5. The structure of the net does not change with time.

To summarize the following assumptions, artificial neural nets are made up of an

arbitrary amount of nodes (neurons) whose network structure is immutable. The only

transmission delay between nodes is synaptic, which is the relative distance between

nodes. The activity of an individual node is all or nothing. A node that has been triggered

by the network either transmits or prohibits subsequent signals. There are no partial

transmissions or partial blockages; all activity after excitation is absolute.From these

cardinal assumptions, Pitts and McCulloch used extensive calculus to translate neural

activity into some relatively straightforward mathematics. Many papers have been

Figure 3. Artificial Neuron

Law 6

published and much research has been done regarding different network models,

mathematical properties, and neural anomalies since the Pitts-McCulloch paper.

However, the interest of this paper lies solely in understanding and applying a basic

artificial neural network with only the essential mathematics needed to solve a problem.

Figure 3 illustrates the best way to understand the model and the mathematics used in an

artificial neural network.

Figure 3 is the depiction of a standard node/neuron in an artificial neural network.

Neurons begin with an arbitrary number of inputs represented by x1 through xn. The origin

of the inputs varies depending on the location of the neuron within the network. If the

neuron is part of the input layer, or the beginning layer of the network, the input is

typically provided by a user of the network. If the neuron is not part of the input layer, the

inputs are provided or inhibited by neurons in a prior layer. The values of these inputs are

then multiplied by a weight represented by w1 through wn in Figure 3. Weights will be

discussed in further detail later. After all the inputs have been multiplied by their

respective weights, the determined values of all inputs will then be summed (Summer in

Figure 3). To this sum, a bias will also be added. Like weights, a bias will be discussed

later. The first assumption established earlier was that the activity of a neuron is all or

nothing. When all the input values are determined and summed along with the bias, that

subsequent value could be any possible number. To realize this assumption, the summed

value will be passed through an activation function labeled Threshold unit in Figure 3.

This activation function will determine if the neuron fires or not.

Law 7

A typical activation function is a sigmoid function. The sigmoid function is

bounded, differentiable, and is defined for all real input values. Expressed as
1

1+𝑒−𝑥

the sigmoid function will take the value of the neuron’s sum, x, and produce a number

between 0 and 1. This function works extremely well as an activation function since no

matter what real value the summation produces, once it’s passed through the sigmoid

function, only a value between 0 and 1 will be produced. This translates accordingly to

the neuron firing or not.

Nodes of an artificial neural network are then grouped into layers. These layers

are known as the input layer, one or more hidden layers, and an output layer. The nodes

in each layer are connected to each node in a subsequent layer creating a network such as

Figure 4.

Figure 4. Artificial Neural Network

Law 8

Teaching with Mathematics

Perhaps the most charming aspect of artificial neural networks is their capability

to “learn”. However, the term “learn” is rather misleading. With the increased amount of

automation in today’s workforce, giving machines the ability to learn can be a concerning

thought. Fortunately for us, training an artificial neural network is more akin to teaching a

machine to produce correct results rather than it consciously learning on its own. This is

accomplished by some extremely clever calculus and linear algebra.

Teaching an artificial neural network is fundamentally a challenge in

optimization. The network starts with input data and some randomly generated weights

and biases. These random weights and biases will at first produce results that are

unpredictable and largely incorrect. To tweak these weights and biases, a cost function is

defined. The purpose of the cost function is to measure how well the network is doing

with the current weights and biases. The cost function will take the current weights and

biases as its input and produce a single output value. This single output value is an

indication of how well the network is performing. When this output is large, the current

values of the weights and biases are causing the network to perform poorly. Lowering the

output value of the cost function is done by minimizing the cost function. By minimizing

the cost function, an artificial neural network learns.

Minimizing the cost function is accomplished by gradient descent. If a multi-

variable function F(x), in our case the cost function, is differentiable at some point i.e. the

random weights and biases defined, then F(x) will decrease fastest in the direction of the

negative gradient of F [6]. What is essentially transpiring is the slope of the cost function

is determined at some instance and the goal is to find out what direction to travel to get

Law 9

that slope as flat as possible. Given the current output of the cost function, adjustments

are made to the weights and biases and another output is produced. That output is then

analyzed, the weights and biases are adjusted further, and the direction to travel is

determined again. Repeating this process hundreds, thousands, even millions of times

refines the weights and biases to optimal values; thus, an artificial neural network is

trained.

 Another important topic is how the gradient of the cost function is computed. This

is known as backpropagation. In 1986, “Learning representations by back-propagating

errors” by David Rumelhart, Geoffrey Hinton, and Ronald Williams produced a learning

procedure coined backpropagation that illustrated how quickly the output of the cost

function changes with respect to altering the weights and biases of a network [7].

Alterations to weights and biases have profound effects on the network that ultimately

ripple out and change aspects of the network as a whole. A minor adjustment in one area

will indefinitely alter other areas. The underlying calculus behind it is well beyond the

scope of this paper, but it deals with the partial derivative of the cost function with

respect to the weights and biases. The important aspect to take away from

backpropagation is that certain weights and biases are more influential on the network

than others.

OpenAI and “CartPole-v0”

 In 2015, Elon Musk, the CEO of SpaceX, along with a handful of other investors

pledged over $1 billion in funds towards the development of artificial intelligence (AI).

This manifested itself into a non-profit organization known as OpenAI. Musk believed at

the time that AI was humanity’s greatest threat, so the goal of OpenAI was simple;

Law 10

provide a free, community-based sanctuary where AI could be developed and researched

with a focus on “positive human impact” [8]. He has since left the organization due to

possible conflicts of interest, but OpenAI is still thriving. In 2016, OpenAI released its

first platform for machine learning called “OpenAI Gym”.

Gym is essentially a toolkit that provides users with problems called

environments. Users can then freely test and develop learning algorithms on a plethora of

environments. These environments make no assumptions about algorithms or model

structures, share a common interface allowing for general algorithms to be ported

between environments, and are compatible with any numerical computation library [9].

The environments vary in complexity, spanning from simple locomotion simulations to

full on Atari emulations like Ms. Pacman and Pitfall. All the environments have a goal

which serves as a purpose for training models. Users are then able to freely post their

solution to the OpenAI website to show off how effective their training methods were.

The environment chosen for this paper is known as “CartPole-v0”. The problem

was derived from a paper titled “Neuronlike Adaptive Elements That Can Solve Difficult

Learning Control Problems” written by researchers of the Institute of Electrical and

Electronics Engineers (IEEE) [10]. It begins with a pole attached to a cart which moves

along a frictionless path. The pole begins in the upright position and is bound to the cart

by an un-actuated joint i.e. it won’t move unless a force is acted upon it. The goal is

simple; prevent the pole from falling over. If the pole is more than 15º from vertical or

the cart has moved more than 2.4 units from the center, then the game is over.

Law 11

“Cartpole-v0” Solution in Python

 Harrison Kinsley, who will be referred to from now on by his online pseudonym

Sentdex, is a self-taught programmer and entrepreneur that has created numerous

websites and YouTube videos dedicated to educating others on a variety of topics

regarding the popular programming language Python. Sentdex’s resources on the topic of

artificial neural networks have been invaluable throughout this research process and

combing through his code was a delight. His code served as a foundation from which this

solution was built, and the many hours spent watching his videos and reading his website

has been a prime inspiration for this solution. The code is separated into three distinct

methods; one for collecting training data, one for defining the neural network model, and

one for training the model. All of this is made possible by three Python libraries; gym,

numpy, and tflearn [11].

 The first method training_games() creates a set amount of games, plays the

games with random action input, and stores all the necessary data collected from each

game session. This method utilizes gym to create the “CartPole-v0” environment and

manage the data collection. A score_requirement is created so that information is

only collected from games with optimal scores. This is necessary to ensure the neural

network is being trained with the best possible data collected. Another important note

about this method is that it converts the collected game data into what is known as a one-

hot format. The cart in this environment can only move left or right. If it chooses to move

right, then that choice is ‘hot’. It’s very similar to binary in which a one is ‘hot’ and a

zero is ‘cold’. The data is encoded in this manner so that it can be easily translated by the

neural network later.

Law 12

 The next method, neural_network_model, takes one parameter,

input_size, which is used to create the input layer for the neural network. tflearn

utilizes two methods, fully_connected and dropout to define and create the

entire network instead of manually creating this data structure from scratch. Each line of

fully_connected is passed the size (number of nodes in the layer) and the type of

activation function used. dropout is passed the object which invokes

fully_connected and then the keep probability. The keep probability is a threshold

which each single node must cross to activate. The final fully_connected

establishes the output layer and a part of the cost function. All of this is then passed to a

DNN method which wraps up creation of the network and stores it in an object called

model.

 The final method train_model is admittedly convoluted, but it uses the

numpy library to perform matrix manipulation on the training data and essentially

performs reinforcement training. With two lists, one X, one Y, train_model acts like

a cost function by comparing the two lists, one being what was observed, the other being

what should have been observed, and performing alterations to the weights and biases

based on the cost of the differences.

 By calling all three of these methods, the network is built, provided data, and

subsequently trained. All that is left is to see how well it performs by invoking the

environment again and allowing the network to predict what actions to take. “CartPole-

v0” is considered solved if the average score is over 195 across 100 trials. With samples

Law 13

from 100,000 training games and a score requirement of 100, this program averages a

score of 200 and thus is considered solved.

Solution Code and Conclusion

 Now that technology has finally caught up to theory, artificial neural networks are

becoming a fascinating paradigm to follow. A team at OpenAI created a bot for the

popular game Dota 2 that trained entirely against itself for roughly three months. It was

then released upon professional players in a one-on-one scenario and crushed each and

every one of them [12]. A bot had developed greater skill in three months than these

players had developed over the course of years. MNIST (Modified National Institute of

Standards and Technology) created a substantial database of pixel data from which

networks have trained from in order to recognize handwritten digits. There are even

reports of networks being able to steer vehicles, recognize faces, and even diagnose

certain cancers based on cell shape information.

 In a world where information and data are everything, artificial neural networks

will indefinitely find a niche in future computing. Although artificial neural networks

have been criticized for the inability to solve computationally difficult problems and the

need for massive amounts of data/computing power to train, they should not be

underestimated or discarded. It appears artificial neural networks are simply a piece of

the much larger puzzle of technological enlightenment. OpenAI’s Dota 2 bot has shown

that artificial neural networks can easily surpass the capabilities of a human. The future

of artificial neural networks is as mystifying as it is potentially horrifying, but it certainly

is incredible what technology is capable of.

Law 14

Code Appendix

import gym #Toolkit for learning algorithms

https://github.com/openai/gym

import random #Pseudo-random number module

https://docs.python.org/3.4/library/random.html

import numpy as np #Package for scientific computing

http://www.numpy.org/

import tflearn #Deep learning library from Tensorflow

https://github.com/tflearn/tflearn

from tflearn.layers.core import input_data, dropout, fully_connected

from tflearn.layers.estimator import regression

from statistics import mean, median

from collections import Counter

#Learning rate of neural network

LR = 1e-3

#Define our environment for the network, initialize it

environment = gym.make('CartPole-v0')

environment.reset()

#Timesteps for environment

time_steps = 500

#Keep the data from games with this score or higher

score_requirement = 70

#Number of initial games played for training data

initial_games = 1000

#Target number of timesteps

goal_steps = 500

#Play some games with random behavior for training data

def training_games():

 #[Observations, Moves]

 training_data = []

 #Every score achieved in training games

 scores = []

 #Scores that met our requirements

 accepted_scores = []

 #Begin simulating training games

 for _ in range(initial_games):

 score = 0

 #[Cart Position, Cart Velocity, Pole Angle, Pole Velocity at

Tip]

 game_memory = []

Law 15

 #List containing each value of the previous observation

 prev_observation = []

 #environment.render()

 #For each time step, do a random action

 for _ in range(time_steps):

 #Actions are 0 (push left) or 1 (push right)

 action = environment.action_space.sample()

 '''

 Step returns 4 values: observation(object), reward(float)

 done(boolean), and info(dictionary). This is the agent-

environment

 loop. Each time step, the agent chooses and action and the

 environment returns an observation and a reward

 '''

 observation, reward, done, info = environment.step(action)

 #If our previous observation was successful

 if len(prev_observation) > 0:

 #Append to game_memory the previous observation

 #and the action taken by the agent

 game_memory.append([prev_observation, action])

 prev_observation = observation

 score+=reward

 #If done returns true, the game has finished

 if done:

 break

 #If a score reached our score requirement

 if score >= score_requirement:

 #Add it to the list of accepted scores

 accepted_scores.append(score)

 #Convert game_memory to one-hot format for output layer

 for data in game_memory:

 if data[1] == 1:

 #Action agent took (right)

 output = [0,1]

 elif data[1] == 0:

 #Action agent took (left)

 output = [1,0]

 #Store data from training games into training_data list

 training_data.append([data[0], output])

Law 16

 environment.reset()

 scores.append(score)

 '''

 Use to view stats about training data

 print('Highest score:', max(scores))

 print('Average accepted score:', mean(accepted_scores))

 print('Median score for accepted scores:', median(accepted_scores))

 print(Counter(accepted_scores))

 '''

 return training_data

training_games()

#Create model for neural network

def neural_network_model(input_size):

 network = input_data(shape=[None, input_size, 1], name='input')

 network = fully_connected(network, 64, activation='relu')

 network = dropout(network, 0.8)

 network = fully_connected(network, 128, activation='relu')

 network = dropout(network, 0.8)

 network = fully_connected(network, 256, activation='relu')

 network = dropout(network, 0.8)

 network = fully_connected(network, 128, activation='relu')

 network = dropout(network, 0.8)

 network = fully_connected(network, 64, activation='relu')

 network = dropout(network, 0.8)

 network = fully_connected(network, 2, activation='softmax')

 network = regression(network, optimizer='adam', learning_rate=LR,

loss='categorical_crossentropy', name='targets')

 model = tflearn.DNN(network, tensorboard_dir='log')

 return model

def train_model(training_data, model=False):

 #Reshaping training data with numpy (not really sure)

 X = np.array([i[0] for i in training_data]).reshape(-

1,len(training_data[0][0]),1)

 #Filling Y with target data

 Y = [i[1] for i in training_data]

 if not model:

 model = neural_network_model(input_size = len(X[0]))

Law 17

 '''

 This model.fit passes 4 parameters:

 1: X input data as a dictionary

 2: Y target data to train model

 3: Number of epochs (backpropagation after each epoch)

 4: Displays accuracy at every step

 '''

 model.fit({'input': X}, {'targets': Y}, n_epoch=7,

show_metric=True)

 return model

#Perform training_games and subsequent training

training_data = training_games()

model = train_model(training_data)

#Lists for new scores and choices

#made by the model

scores = []

choices = []

#Functions similarly to training_games

for each_game in range(100):

 score = 0

 game_memory = []

 prev_obs = []

 environment.reset()

 for _ in range(goal_steps):

 #environment.render()

 #Start game off with random action

 if len(prev_obs) == 0:

 action = random.randrange(0,2)

 #Otherwise use model's prediction

 else:

 action = np.argmax(model.predict(prev_obs.reshape(-

1,len(prev_obs),1))[0])

 #Save action taken by model

 choices.append(action)

 new_observation, reward, done, info = environment.step(action)

 prev_obs = new_observation

 game_memory.append([new_observation, action])

 score+=reward

 if done: break

 scores.append(score)

Law 18

#Useful stats for post training

print('Average Score:',sum(scores)/len(scores))

print('choice 1:{} choice

0:{}'.format(choices.count(1)/len(choices),choices.count(0)/len(choices

)))

Law 19

References

[1] Kandel ER, Schwartz JH, Jessel TM, eds. (2000). "Ch. 2: Nerve cells and

behavior". Principles of Neural Science. McGraw-Hill Professional. ISBN 978-0-

8385-7701-1.

[2] Green, Hank. (2015, March 2). Crash Course the Nervous System. The Nervous

System, Part 2 – Action! Potential!: Crash Course A&P #9. Retrieved from

https://www.youtube.com/watch?v=OZG8M_ldA1M

[3] Sukel, Kayt. (2011, March 15). The Dana Foundation. The Synapse – A Primer.

Retrieved from http://www.dana.org/News/Details.aspx?id=43512

 [4] Hormuzdi, Sheriar G. et al. (2004, March). BioChimica et Biophysica Acta – (BBA)

Biomembranes. Electrical synapses: a dynamic signaling system that shapes the

activity of neuronal networks. Retrieved from

https://www.sciencedirect.com/science/article/pii/S0005273604000410

 [5] Pitts, Walter. McCulloch, Warren S. (1943). Society for Mathematical Biology. A

Logical Calculus Of The Ideas Immanent In Nervous Activity. Retrieved from

https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf

 [6] 3Blue1Brown. (2017, October 16). Neural Networks. Gradient descent, how neural

networks learn | Chapter 2, deep learning. Retrieved from

https://www.youtube.com/watch?v=IHZwWFHWa-w&t=336s

[7] Nielson, Michael. (2017, December). Neural Networks and Deep Learning. Retrieved

from http://neuralnetworksanddeeplearning.com/index.html

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-8385-7701-1
https://en.wikipedia.org/wiki/Special:BookSources/978-0-8385-7701-1

Law 20

 [8] British Broadcasting Company. (2015, December 12). British Broadcasting

Company. Tech giants pledge $1bn for ‘altruistic AI’ venture, OpenAI. Retrieved

from http://www.bbc.com/news/technology-35082344

[9] OpenAI. (2016). OpenAI. Getting Started with Gym. Retrieved from

https://gym.openai.com/docs/

[10] Barto, AG. Sutton, RS. Anderson, CW. (1983). IEEE Transactions on Systems,

Man, and Cybernetics. Neuronlike Adaptive Elements That Can Solve Difficult

Learning Control Problem. Retrieved from

https://gym.openai.com/envs/CartPole-v0/#barto83

 [11] Kinsely, Harrison. (2017, March 13). Sentdex. Using a neural network to solve

OpenAI’s CartPole balancing environment. Retrieved from

https://pythonprogramming.net/openai-cartpole-neural-network-example-

machine-learning-tutorial/

[12] OpenAI. (2017, August 6). OpenAI. More on Dota 2. Retrieved from

https://blog.openai.com/more-on-dota-2/

FIGURE 1 https://askabiologist.asu.edu/neuron-anatomy

FIGURE 2 https://socratic.org/questions/what-is-the-role-of-potassium-in-muscle-contraction

FIGURE 3 https://medium.com/@xenonstack/overview-of-artificial-neural-networks-and-its-

applications-2525c1addff7

FIGURE 4 http://www.thewindowsclub.com/deep-learning-and-neural-network

https://askabiologist.asu.edu/neuron-anatomy
https://medium.com/@xenonstack/overview-of-artificial-neural-networks-and-its-applications-2525c1addff7
https://medium.com/@xenonstack/overview-of-artificial-neural-networks-and-its-applications-2525c1addff7
http://www.thewindowsclub.com/deep-learning-and-neural-network

Law 21

Seth Law

Major in Computer Science, Minor in Mathematics

Committee Members: Paul Sible, Weifeng Chen, Gregg Gould

Artificial Neural Networks, Machine Learning, Python, Neurons

Title: Exploring Artificial Neural Networks with “CartPole-v0”

Solution

