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Abstract 

Some technical optimization problems that have been normally solved manually or with other 

traditional techniques, can be optimized by using different advanced techniques. Techniques 

have evolved to include artificial intelligence (AI) algorithms to get better results. Genetic 

algorithms are a great example of one of these optimization techniques that uses AI. While 

these techniques are designed to solve problems more efficiently than before, there are some 

problems that are better suited to these algorithms compared to others. By analyzing 

experimental data, it is possible to discern what types of problems are better solved using 

genetic algorithms are better at solving. Studies that have isolated genetic algorithmic 

applications have been chosen to better compare the solutions that were found, straying away 

from hybridizations of any kind that could influence results and blur the line of responsibility. 

Five optimization problems were analyzed to find the problems that had the best improved 

results and the style best suited for genetic algorithms. These optimization problems that were 

studied include: PID control tuning; traveling salesman shortest path; generation of machine 

turning code; design of a wind turbine tower; and A-Mazer, a maze-solving algorithm. By 

breaking down these problems and how genetic algorithms are used to enhance solutions, a 

comparison can be made. It was found that problems that would have multiple trials within 

traditional techniques are more suited for genetic algorithms over other optimization problems. 
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Background 

Genetic algorithms (GA) are numerical algorithms which are inspired by the biological process of 

natural selection. They are designed after the biological method of how genes are passed on 

throughout generations. Potential solutions to the problem represent individuals in the 

population. These are simply strings of data that indicate the key parameters to define a 

solution. A set of solution criteria behaves as the environment to define which solutions are 

better - “more fit”. The evolutionary process consists of three primary processes: selection, 

crossover, and mutation. The selection process is where the fitness of each individual is 

evaluated. These strings of data progress over to the crossover stage, where individuals are 

chosen at random to produce new individuals composed to shared parts of both “parents”. The 

resulting string is made from the selected pair; sharing data from both. The population will then 

enter the mutation phase where bits of that data will be randomly altered to create variety in 

the code. With this step, new possibilities may be considered that might never have shown up 

with only the selection and crossover stages. Some of these mutations may be beneficial, others 

may not. The better solutions will be selected to start the selection, crossover, and mutation 

process over again. These steps will be repeated until a convergence criterion is met or the 

simulation is manually stopped. At times, the engineer will not be satisfied with the results after 

numerous tries with the optimization and a new initial population will be constructed for re-

optimization. 

PID Control 

One optimization problem that can be solved by genetic algorithms is PID control. Traditionally, 

PID control can be tuned by an engineer to get the desired results in a system response. While 

this is often an effective method, other methods were discovered to generate faster and more 

accurate results, such as the genetic algorithm. PID comes in three forms of systems; 
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Proportional(P), Proportional Integral (PI), and Proportional Integral Derivative (PID). PID 

systems have gains that need to be adjusted to create a stable system response. P systems have 

𝐾𝑝  gains, PI systems have 𝐾𝑝  and 𝐾𝑖 gains, and PID systems have 𝐾𝑝 , 𝐾𝑖 , and 𝐾𝑑 gains. 

A system response is the output of a system, which has already been given a desired state by 

the engineer. This desired point, the setpoint, is represented as a horizontal line across the 

output graph of the system. The overshoot and undershoot of the graph, as represented below 

in Figure 1, should be as small as possible for optimal results. The rise time, the time it takes to 

rise from 10% to 90% of the stability condition, indicates the speed of the response. This should 

also be minimized. The oscillations after reaching the setpoint should also remain bounded near 

the setpoint to maintain stability and can be measured as settling time. Shorter settling time 

indicates better response. 

The way that a system response behaves is like a thermostat. The desired temperature would be 

the setpoint and once set, the temperature would try to reach that setpoint. The temperature 

might go higher than what was desired, which would be the overshoot. If it dips lower than the 

desired temperature, that would be the undershoot. The thermostat shuts off and turns back on 

to remain at the desired temperature, which would be the steadying oscillations that is 

measured as the settling time. 
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Figure 1: System Response Definitions 

(Champak, Avendano, & Figueras, 2010) 

 

For the gains in a system to be optimized, the values must be adjusted within the written code, 

which is then updated in the equation. The governing equation is split off into one, two, or three 

equations respectively for the different P, PI, and PID systems. 

PID Original Equation: 

𝑢(𝑡) = 𝑀𝑉(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏 
𝑡

0

+ 𝐾𝑑

𝑑

𝑑𝑡
 𝑒(𝑡) 

Mjahed, Mostafa created a study on PID control with genetic algorithms to analyze the effects 

of before and after the implementation. All three gains; 𝐾𝑝, 𝐾𝑖 , and 𝐾𝑑 , were gathered in one 

string and implemented within the genetic algorithm’s selection, crossover, and mutation 
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processes. By doing this, the solution that was optimized was composed of the gains. These 

gains were fed into the system to test the system response for each individual, at each iteration. 

 When only using traditional techniques, the results are as shown below in Figure 2. When using 

the genetic algorithm, the system response is as shown below in Figure 3. The overshoot had 

decreased by 14.7%, the settling time decreased by 137.7 seconds, and the rise time decreased 

by 43.3 seconds. This indicates that the algorithm was capable of finding a better solution than 

could have been found using traditional means.   

 

 

Figure 2: Traditional Technique System Response 
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Figure 3: GA System Response 

Traveling Salesman 

For the traveling salesman optimization problem, the goal is different than PID control. In this 

problem, there are multiple locations which a salesman must visit. The best path taken to hit all 

these stops in the quickest fashion is the goal. This problem would normally need to be solved 

using “brute force” – checking all possible solutions. This is obviously cumbersome, so a method 

capable of finding the optimal solution without having to check all possible solutions is 

beneficial. 

In this experiment by Hazim, Ziyad & Al-Jabbar, Abid, researchers looked at comparing the 

relative time and number of operations needed to solve the problem using the genetic 

algorithm versus traditional methods. Points of Duhok City were used as the locations, and the 

shortest path was to be found to hit all indications regardless of roads or other obstacles. 
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Excel was used to store the locations of Duhok City that were to be used to come up with 

possible paths to start the genetic algorithms process. Locations without a path for Duhok City 

Areas have the longitudes and latitudes shown in Figure 4. MATLAB served as the environment 

for the genetic algorithm. 

 

 

Figure 4: Selected Locations 

 

Results for this genetic algorithm showed that the algorithm was capable of converging to the 

same global optimum solution for each trial, even though each trial started from a different 

population of solutions, and ultimately took a different number of generations to converge. 

Time to converge ranged from 2.49 seconds to 7.43 seconds – vastly shorter than a brute force 

approach, while yielding the equivalent result. The optimal solution obtained in each trial is 

shown in Figure 5 below. 
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Figure 5: Optimal Path Result 

 

Optimization of Machine Parameters for Tuning Operations 

One common production machine for manufacturing is a lathe. A lathe is used to rotate material 

into which a cutting tool is driven to remove material. This is also called machine turning. The 

machines are often automated using Computer Numerical Cutting (CNC) technology. When 

performing CNC cutting, the machine must be programmed as to where and how to cut the 

material. How the material is cut is as important as what cuts to make. Proper tool positioning, 

selection of appropriate spindle speed, feed rate, and other cutting parameters have a strong 

impact on the quality of the finished part, the speed at which the part can be produced, and 

how long the tooling will last. These economic factors make proper selection of these 

parameters extremely important. 

Traditionally, “rules of thumb” guidelines are used to select these parameters, based on the 

material being cut, the type of cut being performed, etc. If this is instead preformed using a 

genetic algorithm, a more efficient result can be achieved. 
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A series of constraints for the cutting parameters based on minimizing machining cost are 

mathematically derived and used within the genetic algorithm to provide the environment. 

MATLAB was used to solve as a programming base. The goal is to acquire more accurate 

boundaries for the cutting process in machining. This saves money, cuts down time, an allows 

the tools to last longer.  

𝐶 = 0.3 +
4.6

𝑉𝑐𝑓
+ 1.72 ∗ 10−11𝑉𝑐

4.55𝑓0.67 

The C stands for machining cost measured in euros and 𝑉𝑐𝑓 are the constraints. By using these 

variables, an equation for machine turning can be found. The code for the genetic algorithm will 

enforce the constraints. 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐶 = 𝑡𝑢𝑟𝑛𝑖𝑛𝑔_𝑐𝑜𝑠𝑡(𝑥) 

𝐶 = 0.3 +
4.6

𝑥(1) ∗ 𝑥(2)
+ 1.72 ∗ 10−11 ∗ 𝑥(1)4.55𝑥(2)0.67; 

𝑒𝑛𝑑 

The nonlinear constraints also need to be taken into consideration. 

                                        

Once this code is made, MALAB can be used to execute and go through the genetic process to 

find the optimization solution. 
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The genetic algorithm takes 60 seconds to generate results for a total of 8 trials. The solution 

created was 𝐶𝑚𝑖𝑛=0.335519 (euros), 𝑣𝑐=14.395 m/min and f=9.0 mm/rev. 

Wind Turbine Tower 

Genetic algorithms can also be used to reduce the size of the wind turbine towers. This is valued 

because it, in turn, lowers cost. Shigeo Yoshida experimented to create an optimization program 

from the genetic algorithm which determines the diameter of the whole tower, thickness of the 

wall, and position of flanges and doors to the navigation lights when facing certain factors. 

When creating a wind turbine tower, many factors and guidelines are made that interfere with 

the design and make of the tower. To determine new guidelines to go by, using the genetic 

algorithm, there are a few steps that had to be taken. The materials, structure, Building 

Standard Law of Japan (BSL) force conditions, general guidelines, genetic algorithm limits, and 

other needs had to be considered along with the calculated load that was determined from the 

original tower and the aeroelastic. From this, IEC61400-1/Germanischer Lloyd (IEC/GL) forces 

from the design and safety variables were found.  

These can then find the elements of the optimization program, which includes multiple factors 

of the tower. The genetic algorithm uses a solution domain that has be converted to biological 

terms and a fitness equation to use on this domain. This equation, along with modal analysis for 

1st to 3rd bending forms, BSL forces, stability, fatigue damage, diameter distribution, and location 

of flanges and doors to navigation lights are what are considered for the optimization program 

and help with the design. The program can now find the necessary limits for the new tower. 

 

Shown in Figure 6, is the relationship that the progress of iterations in the genetic algorithm had 

on fitness. 
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Figure 6: Performance of Model per Generation 

 

The genetic algorithm was able to take different parameters in the tower and adjust to find the 

optimal results for each specific variation. Tower A; as shown in Figure 7, and Tower G; in Figure 

8, are the first and last results respectively. Tower A through Tower G have different 

parameters. 
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Figure 7: Tower A Results 

 

Figure 8: Tower G Results 

 



12 
 

A-Mazer 

For this optimization problem, it is much like the traveling salesman in that the best route is to 

be determined. The difference being, there are only two location points. More thought is 

needed for this experiment on the part of the genetic algorithm, in the sense that there are 

walls in place that act as barriers to be eliminated in one spot. Meaning, one wall needs to be 

removed to make the maze functionable and the best option needs to be determined by the 

genetic algorithm.  

Mazes are generated with random entry and exit locations for each new maze. The Genetic 

Algorithm must analyze the possible routes and find the shortest path. 

Like in the previous problems, the solution goes through selection, crossover, and mutation 

processes. The GA also has the specific, tailored, fitness equation that is applied.  Genetic 

algorithms can accommodate different types of problems.  

An example of a finished maze completed with genetic algorithms is shown below in Figure 8. 

While the genetic algorithm does not always find the best solution, it finds better paths 

compared to other tried applications. 
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Figure 10: Maze Solution Example 

 

Conclusions 

While genetic algorithms can often be used to optimize at least one element of a problem, they 

have various strengths and limitations. Genetic algorithms have an evolutionary design that 

makes optimization problems a good match, there are some optimization problems that are 

better suited for genetic algorithms. Other “decision making” algorithms might be better suited 

for the other optimization problems. Genetic algorithms show promising results when facing 

these optimization problems, but some are more complex than others. Genetic algorithms are 

better suited for optimization problems that are harder to determine using traditional analytic 

techniques.  
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