

“Why Genetic Algorithms Are More Suited to Solve Certain Types of Optimization
Problems”

 An Honors Thesis

 by

Leslie E. Peters

 California, Pennsylvania

 2020

Acknowledgements

I would like to thank the Honors Program for the opportunity to work on this thesis project and

to expand my knowledge. I would also like to thank my committee for their cooperation and

help with this project; Dr. Brenton Wilburn, Dr. Jennifer Wilburn, and Prof. Loring Prest. A

special thanks to Dr. Jennifer Wilburn for the patience and time she put into holding meetings

and helping me understand certain aspects of this project.

Abstract

Some technical optimization problems that have been normally solved manually or with other

traditional techniques, can be optimized by using different advanced techniques. Techniques

have evolved to include artificial intelligence (AI) algorithms to get better results. Genetic

algorithms are a great example of one of these optimization techniques that uses AI. While

these techniques are designed to solve problems more efficiently than before, there are some

problems that are better suited to these algorithms compared to others. By analyzing

experimental data, it is possible to discern what types of problems are better solved using

genetic algorithms are better at solving. Studies that have isolated genetic algorithmic

applications have been chosen to better compare the solutions that were found, straying away

from hybridizations of any kind that could influence results and blur the line of responsibility.

Five optimization problems were analyzed to find the problems that had the best improved

results and the style best suited for genetic algorithms. These optimization problems that were

studied include: PID control tuning; traveling salesman shortest path; generation of machine

turning code; design of a wind turbine tower; and A-Mazer, a maze-solving algorithm. By

breaking down these problems and how genetic algorithms are used to enhance solutions, a

comparison can be made. It was found that problems that would have multiple trials within

traditional techniques are more suited for genetic algorithms over other optimization problems.

Table of Contents

Background ... Error! Bookmark not defined.

PID Control .. Error! Bookmark not defined.

Traveling Salesman ... Error! Bookmark not defined.

Optimization of Machine Parameters for Tuning Operations Error! Bookmark not defined.

Wind Turbine Tower ... Error! Bookmark not defined.

A-Mazer ... Error! Bookmark not defined.

Conclusions ... Error! Bookmark not defined.

References .. Error! Bookmark not defined.

1

Background

Genetic algorithms (GA) are numerical algorithms which are inspired by the biological process of

natural selection. They are designed after the biological method of how genes are passed on

throughout generations. Potential solutions to the problem represent individuals in the

population. These are simply strings of data that indicate the key parameters to define a

solution. A set of solution criteria behaves as the environment to define which solutions are

better - “more fit”. The evolutionary process consists of three primary processes: selection,

crossover, and mutation. The selection process is where the fitness of each individual is

evaluated. These strings of data progress over to the crossover stage, where individuals are

chosen at random to produce new individuals composed to shared parts of both “parents”. The

resulting string is made from the selected pair; sharing data from both. The population will then

enter the mutation phase where bits of that data will be randomly altered to create variety in

the code. With this step, new possibilities may be considered that might never have shown up

with only the selection and crossover stages. Some of these mutations may be beneficial, others

may not. The better solutions will be selected to start the selection, crossover, and mutation

process over again. These steps will be repeated until a convergence criterion is met or the

simulation is manually stopped. At times, the engineer will not be satisfied with the results after

numerous tries with the optimization and a new initial population will be constructed for re-

optimization.

PID Control

One optimization problem that can be solved by genetic algorithms is PID control. Traditionally,

PID control can be tuned by an engineer to get the desired results in a system response. While

this is often an effective method, other methods were discovered to generate faster and more

accurate results, such as the genetic algorithm. PID comes in three forms of systems;

2

Proportional(P), Proportional Integral (PI), and Proportional Integral Derivative (PID). PID

systems have gains that need to be adjusted to create a stable system response. P systems have

𝐾𝑝 gains, PI systems have 𝐾𝑝 and 𝐾𝑖 gains, and PID systems have 𝐾𝑝 , 𝐾𝑖 , and 𝐾𝑑 gains.

A system response is the output of a system, which has already been given a desired state by

the engineer. This desired point, the setpoint, is represented as a horizontal line across the

output graph of the system. The overshoot and undershoot of the graph, as represented below

in Figure 1, should be as small as possible for optimal results. The rise time, the time it takes to

rise from 10% to 90% of the stability condition, indicates the speed of the response. This should

also be minimized. The oscillations after reaching the setpoint should also remain bounded near

the setpoint to maintain stability and can be measured as settling time. Shorter settling time

indicates better response.

The way that a system response behaves is like a thermostat. The desired temperature would be

the setpoint and once set, the temperature would try to reach that setpoint. The temperature

might go higher than what was desired, which would be the overshoot. If it dips lower than the

desired temperature, that would be the undershoot. The thermostat shuts off and turns back on

to remain at the desired temperature, which would be the steadying oscillations that is

measured as the settling time.

3

Figure 1: System Response Definitions

(Champak, Avendano, & Figueras, 2010)

For the gains in a system to be optimized, the values must be adjusted within the written code,

which is then updated in the equation. The governing equation is split off into one, two, or three

equations respectively for the different P, PI, and PID systems.

PID Original Equation:

𝑢(𝑡) = 𝑀𝑉(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0

+ 𝐾𝑑

𝑑

𝑑𝑡
 𝑒(𝑡)

Mjahed, Mostafa created a study on PID control with genetic algorithms to analyze the effects

of before and after the implementation. All three gains; 𝐾𝑝, 𝐾𝑖 , and 𝐾𝑑 , were gathered in one

string and implemented within the genetic algorithm’s selection, crossover, and mutation

4

processes. By doing this, the solution that was optimized was composed of the gains. These

gains were fed into the system to test the system response for each individual, at each iteration.

 When only using traditional techniques, the results are as shown below in Figure 2. When using

the genetic algorithm, the system response is as shown below in Figure 3. The overshoot had

decreased by 14.7%, the settling time decreased by 137.7 seconds, and the rise time decreased

by 43.3 seconds. This indicates that the algorithm was capable of finding a better solution than

could have been found using traditional means.

Figure 2: Traditional Technique System Response

5

Figure 3: GA System Response

Traveling Salesman

For the traveling salesman optimization problem, the goal is different than PID control. In this

problem, there are multiple locations which a salesman must visit. The best path taken to hit all

these stops in the quickest fashion is the goal. This problem would normally need to be solved

using “brute force” – checking all possible solutions. This is obviously cumbersome, so a method

capable of finding the optimal solution without having to check all possible solutions is

beneficial.

In this experiment by Hazim, Ziyad & Al-Jabbar, Abid, researchers looked at comparing the

relative time and number of operations needed to solve the problem using the genetic

algorithm versus traditional methods. Points of Duhok City were used as the locations, and the

shortest path was to be found to hit all indications regardless of roads or other obstacles.

6

Excel was used to store the locations of Duhok City that were to be used to come up with

possible paths to start the genetic algorithms process. Locations without a path for Duhok City

Areas have the longitudes and latitudes shown in Figure 4. MATLAB served as the environment

for the genetic algorithm.

Figure 4: Selected Locations

Results for this genetic algorithm showed that the algorithm was capable of converging to the

same global optimum solution for each trial, even though each trial started from a different

population of solutions, and ultimately took a different number of generations to converge.

Time to converge ranged from 2.49 seconds to 7.43 seconds – vastly shorter than a brute force

approach, while yielding the equivalent result. The optimal solution obtained in each trial is

shown in Figure 5 below.

7

Figure 5: Optimal Path Result

Optimization of Machine Parameters for Tuning Operations

One common production machine for manufacturing is a lathe. A lathe is used to rotate material

into which a cutting tool is driven to remove material. This is also called machine turning. The

machines are often automated using Computer Numerical Cutting (CNC) technology. When

performing CNC cutting, the machine must be programmed as to where and how to cut the

material. How the material is cut is as important as what cuts to make. Proper tool positioning,

selection of appropriate spindle speed, feed rate, and other cutting parameters have a strong

impact on the quality of the finished part, the speed at which the part can be produced, and

how long the tooling will last. These economic factors make proper selection of these

parameters extremely important.

Traditionally, “rules of thumb” guidelines are used to select these parameters, based on the

material being cut, the type of cut being performed, etc. If this is instead preformed using a

genetic algorithm, a more efficient result can be achieved.

8

A series of constraints for the cutting parameters based on minimizing machining cost are

mathematically derived and used within the genetic algorithm to provide the environment.

MATLAB was used to solve as a programming base. The goal is to acquire more accurate

boundaries for the cutting process in machining. This saves money, cuts down time, an allows

the tools to last longer.

𝐶 = 0.3 +
4.6

𝑉𝑐𝑓
+ 1.72 ∗ 10−11𝑉𝑐

4.55𝑓0.67

The C stands for machining cost measured in euros and 𝑉𝑐𝑓 are the constraints. By using these

variables, an equation for machine turning can be found. The code for the genetic algorithm will

enforce the constraints.

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐶 = 𝑡𝑢𝑟𝑛𝑖𝑛𝑔_𝑐𝑜𝑠𝑡(𝑥)

𝐶 = 0.3 +
4.6

𝑥(1) ∗ 𝑥(2)
+ 1.72 ∗ 10−11 ∗ 𝑥(1)4.55𝑥(2)0.67;

𝑒𝑛𝑑

The nonlinear constraints also need to be taken into consideration.

Once this code is made, MALAB can be used to execute and go through the genetic process to

find the optimization solution.

9

The genetic algorithm takes 60 seconds to generate results for a total of 8 trials. The solution

created was 𝐶𝑚𝑖𝑛=0.335519 (euros), 𝑣𝑐=14.395 m/min and f=9.0 mm/rev.

Wind Turbine Tower

Genetic algorithms can also be used to reduce the size of the wind turbine towers. This is valued

because it, in turn, lowers cost. Shigeo Yoshida experimented to create an optimization program

from the genetic algorithm which determines the diameter of the whole tower, thickness of the

wall, and position of flanges and doors to the navigation lights when facing certain factors.

When creating a wind turbine tower, many factors and guidelines are made that interfere with

the design and make of the tower. To determine new guidelines to go by, using the genetic

algorithm, there are a few steps that had to be taken. The materials, structure, Building

Standard Law of Japan (BSL) force conditions, general guidelines, genetic algorithm limits, and

other needs had to be considered along with the calculated load that was determined from the

original tower and the aeroelastic. From this, IEC61400-1/Germanischer Lloyd (IEC/GL) forces

from the design and safety variables were found.

These can then find the elements of the optimization program, which includes multiple factors

of the tower. The genetic algorithm uses a solution domain that has be converted to biological

terms and a fitness equation to use on this domain. This equation, along with modal analysis for

1st to 3rd bending forms, BSL forces, stability, fatigue damage, diameter distribution, and location

of flanges and doors to navigation lights are what are considered for the optimization program

and help with the design. The program can now find the necessary limits for the new tower.

Shown in Figure 6, is the relationship that the progress of iterations in the genetic algorithm had

on fitness.

10

Figure 6: Performance of Model per Generation

The genetic algorithm was able to take different parameters in the tower and adjust to find the

optimal results for each specific variation. Tower A; as shown in Figure 7, and Tower G; in Figure

8, are the first and last results respectively. Tower A through Tower G have different

parameters.

11

Figure 7: Tower A Results

Figure 8: Tower G Results

12

A-Mazer

For this optimization problem, it is much like the traveling salesman in that the best route is to

be determined. The difference being, there are only two location points. More thought is

needed for this experiment on the part of the genetic algorithm, in the sense that there are

walls in place that act as barriers to be eliminated in one spot. Meaning, one wall needs to be

removed to make the maze functionable and the best option needs to be determined by the

genetic algorithm.

Mazes are generated with random entry and exit locations for each new maze. The Genetic

Algorithm must analyze the possible routes and find the shortest path.

Like in the previous problems, the solution goes through selection, crossover, and mutation

processes. The GA also has the specific, tailored, fitness equation that is applied. Genetic

algorithms can accommodate different types of problems.

An example of a finished maze completed with genetic algorithms is shown below in Figure 8.

While the genetic algorithm does not always find the best solution, it finds better paths

compared to other tried applications.

13

Figure 10: Maze Solution Example

Conclusions

While genetic algorithms can often be used to optimize at least one element of a problem, they

have various strengths and limitations. Genetic algorithms have an evolutionary design that

makes optimization problems a good match, there are some optimization problems that are

better suited for genetic algorithms. Other “decision making” algorithms might be better suited

for the other optimization problems. Genetic algorithms show promising results when facing

these optimization problems, but some are more complex than others. Genetic algorithms are

better suited for optimization problems that are harder to determine using traditional analytic

techniques.

14

References

• Choubey, Nitin. (2012). A-Mazer with Genetic Algorithm. International Journal of

Computer Applications (0975 – 8887). 58. 48-54. 10.5120/9378-3886.

• Hazim, Ziyad & Al-Jabbar, Abid. (2020). Using Genetic Algorithm to Solve Travelling

Salesman Optimization Problem Based on Google Map Coordinates for Duhok City

Areas.

• Mjahed, Mostafa. (2013). PID Controller Design using Genetic Algorithm technique.

• PETKOVIC, D., & RADOVANOVIC, M. (2013). Using Genetic Algorithms for Optimization

of Turning Machining Process. Journal of Engineering Studies & Research, 19(1), 47–55.

• Shigeo Yoshida. (2006). Wind Turbine Tower Optimization Method Using a Genetic

Algorithm. Wind Engineering, 30(6), 453.

	ADP6371.tmp
	Acknowledgements

	ADP14F1.tmp
	Abstract

	ADP6407.tmp
	“Why Genetic Algorithms Are More Suited to Solve Certain Types of Optimization Problems”

