“The Efficiency and Efficacy of Parallel Computing”

An Honors Thesis

by

Scott T. Sheppard

California, Pennsylvania

2018

California University of Pennsylvania

California, Pennsylvania

We hereby approve the Honors Thesis of
Scott T. Sheppard

Candidate for the degree of Bachelor of Science

Honors Thesis Advisor

-2 1F W >

“William Dieterle, PhD
Second Reader

4-24- /8 Aé«?A Mk

Grélg Gould, PhD
Honors Advisory Board

A 24[1 6 (/)(. _’7

Craig Fox, Ph?
Associate Diréctor, Honors Program

Z‘l.zl‘...‘i 20t o C A

| M. G. Aune, PhD
Director, Honors Program

The Efficiency and Efficacy of
Parallel Computing

Scott Sheppard
University Honors Department
California University of Pennsylvania
California, Pennsylvaia, United States of America
She1472@calu.edu

Abstract— An n-body gravitational simulator was
created and used to analyze the efficiency and efficacy
of parallelizing a workload across a number of parallel
processing cores in personal computing systems. While
parallelizing does have definite performance
advantages, there exist hurdles and limitations to
implementing such.

Keywords—Parallel Processing, Amdahl’s Law,
Moore’s Law, Multicore, Multithreaded

[. INTRODUCTION

Since the introduction of the first
microprocessor chips over half a century ago, the
processing power available for a single chip system
has consistently grown exponentially throughout the
decades. However, due to a variety of factors this
trend has been beginning to stagnate recently. As a
result, multicore processors have become the norm
for the consumer market in recent years, with
higher-end consumer chips being capable of
processing up to sixteen simultaneous threads.
However, in order to take full advantage of the
multicore processors, programs will need to be
rewritten with parallelization in mind. Not all
workloads will see substantial benefit for this extra
effort, but it may allow problems that were once
unfeasible to become easily solvable in a short time.
Here, this is demonstrated by analyzing the
performance of an n-body gravitational simulator as
an example of a parallelized workload.

[[. BACKGOUND INFORMATION RELATED TO
PARALLELIZATION

A. Moore’s Law

For most of the past sixty years or so,
microprocessors have tended to have followed
Moore’s Law rather closely, roughly doubling a
single chip’s density of transistors every two years
[1]. These transistors are the incredibly small
electrical switch-like components that are the basis
for most modern computer processors since the

introduction of'the Intel 4004 in 1971[2]. Since then,
the transistor count has been consistently rising by a
factor of two roughly every two years. This has been
achieved by both increasing the total chip size and
manufacturing ever smaller transistors into more
densely packed areas. These smaller transistors
have the advantage of needing less of an electrical
charge to function, and as a result are faster, use less
energy, and produce less waste heat.

For an example of how far microprocessor
technology has progressed, in the previously
mentioned Intel 4004, there was a total of 2,300
transistors on the 12 mm? size chip, with a spacing
of about 10,000 nm between the transistors. More
modern [ntel processors, such as a Skylake based
Core i7-7700k, have approximately 1.7 billion
transistors on a 122 mm? chip, with only about 14nm
between transistors.

However, in recent years manufacturers have
been starting to encounter an ever-increasing
difficulty in designing, manufacturing, and
producing processors that still follow Moore’s Law
[3]. At present, transistors are so small they can
easily measure 10 to 20 atomic diameters across
their shortest axis. In fact, this is so small that the
physics underlying many current technologies
simply do not work if the transistors are made any
smaller, either due to just the impossibly small
scales that are being dealt with, or because of the
increasing role that quantum effects start to play at
these levels.

Physical constraints are not alone beginning to
slow progress. As the transistors become even
smaller, the cost of researching and trying to
develop the technology to reliably produce them
also continues to increase [4]. Intel has recently been
struggling to create a fabrication process to reliably
create transistors for their next generation products.
The research and development cost of this struggle

is estimated to be about one third of Intel’s
yearly profits, and as this price increases, the

amount of time that it will take to produce newer,
faster processors will also increase.

B. Amdahl's Law

As with just about anything, there are some
tradeoffs when a program runs in a parallelized
manner, rather than as a single threaded process.
Gene Amdahl wrote a paper in 1967 titled Falidity
of the single processor approach to achieving large
scale computing capabilities [5], in which he
outlines many of these issues. Among these are Data
Management Housekeeping, boundaries are likely
to be irregular, and interiors may be
inhomogeneous. Assuming most of this can be
overcome, he writes about the diminishing returns
in execution speedup due to parallelizing a portion
of the program across n processors. While he did
not write it as such in his paper, Amdahl’s Law has
been paraphrased as follows.

Speedup = _1T (D

s+ w

In this equation, 7; is the portion of the program
that is serial, in other words, this is the part that is
not, or cannot be, parallelized. Alternately, T is the
portion that can be made to run in parallel on »
number of processing cores, and the sum of 1, and
1, is always 1. Speedup is therefore the ratio of the
speed of the parallelized version compared to that of
the serial version, where a value of one indicates
there is no difference in execution speed. Fig. 1
shows predicted speedups at different »n values for
programs with different portions being parallelized.

Amdahl's Law
20 T

-
1 -
Parallal portlon
16 S0%

s TS
n ! —— %
—_— %

Spaadup

10 7

3

Stttz aAaIRAYERE
H

192
16384
nia

65506

HNumber of processors

Fig. [. Amhal's Law Graphed for Various Values [6]

As is visible in Fig. 1, for any given values of
rp and 7y, there is a maximum speedup that can
occur that is approached asymptoticly, e.g. a
program in which ninety percent runs in parallel (i.e.
7, = 0.9and rgs = 0.1) has a maximum speed up
of ten times when run across a very large number of

processors, compared to the entire program being
run in a serial fashion.

As this demonstrates, for a program with any
parallel portion, adding additional processing units
should increase performance, but for each processor
added the benefit of doing so diminishes, up until a
point at which adding more processors will produce
negligible, if any, noticeable performance increase
[7]. This is all assuming the data set that is being
processed is large enough to create enough work to
be able to be split among all the processing units.

[II. TESTING ENVIRONMENT AND METHODOLOGY

The testing method used here is intended to try
to keep the environment sim ilar to what one might
find on an average consumer computer, while
eliminating as much variance from the system and
minimizing outside influences on the results as is
feasible. As such, these tests were conducted using
a clean install of Microsoft Windows 10 with the
latest updates. (Build number 16299.371 at time of
testing) To minimize variation from run to run, any
unrelated processes that are not being used by either
the operating system or the program are manually
terminated to avoid other programs from utilizing
system resources. In addition, the computer has been
disconnected from any network as an extra
precautionary measure against any outside
interference.

Full system specification can be found in Table
[, but the core of the test is the processor being
utilized, in this case an AMD Ryzen 5 1600x with a
total of twelve logical processors. The processor’s
clock speed has been manually set to 3.89 GHz to
avoid any variation from built in technologies that
may try to temporarily boost performance.

TABLE I TEST SYSTEM PART LIST

Computer System Part List

Part Type Part Model
Processor AMD Ryzen 5 1600X
Motherbard | Asus Prime X-370 Pro
Crucial Ballistix Sport LT 16GB (2 x 8GB)
Memory | DDR4-2400
l Graphics Sapphire - Radeon R9 Fury Nitro
Storage | Seagate 500GB 5400rpm SATA 2 HDD
Rosewill 650W 80+ Bronze Certitied ATX
Power Power Supply
Operating Windows 10 Home - Build 16299.371
System

The program being used for the demonstration
is one of the author’s own creation. It is a simple n-
body gravitational simulator. How this program
works is to take a list of bodies, along with their
mass, position, and velocity, and use this to
iteratively calculate the movement of each body
with respect to a central origin. This type of program
is perfect for parallelization, since in this method the
acceleration due to gravitational forces for each
body can be calculated separately, and those forces
are calculated from the summation of the
gravitational force exerted on the current body by all
bodies in the system.

Specifically, this program uses features built
into C++11 standard, such as thread management
and several other parallel processing specific
features. While these are nice features to be added
into the standard, it took a while to learn how to
properly utilize these new tools. This difficulty was
compounded by the difficulty already inherent in
trying to write code to run in parallel, especially
avoiding race conditions.

After creating the program, many scenarios
were tested, varying the size of the problem
(increasing the number of bodies in the system) and
how many cores would be utilized to work on it
(varying the number of threads that are being used
to split the problem).

[V. DATA AND ANALYSES

Each scenario was tested multiple times, and
the average time for completion was recorded. The
speedup factor was then calculated for each point
and graphed below in Fig. 2.

Speedup for X Threads for
Various System Sizes

Speedup Factor

1 2 3 45 6 7 8 9 101112
Threads Utilized
5000

— 1) e § ()

1000 — 2000
— 10000

Fig. 2 Graph Displaying the Gathered Data

For the 10-body system, there is a very slight
increase in speed when utilizing a second core, but
each additional core causes a slowdown, increasing
the time it takes to complete the same task. It is
likely that this may be caused by the amount of
overhead associated with parallelizing a task. This
is a great example of how not everything will be able
to take advantage of being split up into parallel
tasks. While this program can be easily split to run
in parallelized threads to work on the problem, with
only ten bodies in the system there is not enough
work for each thread to process to make up for the
time required to create, manage, and stop each
thread.

Both the 50-body and the 100-body systems
start out having definite gains from being
parallelized, but both seem to quickly level off. The
50-body system appears to peak at five threads
giving a speedup factor of just above three times, but
then slowly begins to fall, like the 10-body system,
this is presumably due to the overhead of
parallelizing overtaking the benefits of running in
parallel in this program. Thee 100-body system is
similar, but slightly more erratic. This is possibly an
indicator that this system size is close to the point
here the penalty for overhead is overtaken by the
benefit for multithreading for programs running on
less than a dozen threads.

These two body counts also share an odd spike
in performance at the ten threads mark. While it is
not clearly known the reasoning for this, it may be
possible that it is due to being able to better split the
workload evenly, therefore not requiring some
threads to take on a higher workload than others.
This reasoning steams from the fact that the program
divides the work by bodies, meaning that if one
hundred bodies are split among nine threads, eight
of those will be working on eleven bodies each
while the last one will have to work on twelve. The
logic required to deal with this irregular boundary
may be enough to have a noticeable performance hit
for certain workloads.

The 1000, 2000, 5000, and 10000 body systems
all follow a very similar path. Each of these systems
has an almost identical and ideal speedup factor up
until seven threads, at which they each take a sudden
drop before continuing up, approaching similar
speedup values. While it cannot be seen well here,
since the larger systems have more to process within
the parallel portion of the program, they have a
slightly larger portion being parallelized, therefore
will have a higher maximum theoretical speedup.

The slowdown present when increasing from
six to seven threads was surprising at first. After a

P

2

little bit of research and experimentation, it would
appear that this is a byproduct of the Simultaneous
Multi-Threading (SMT) technology built into the
Ryzen processor. Simply put, this is a technology
built into newer processors to minimize the
processors’ down time by having each processing
core quickly alternate between processing two
threads, reducing the amount of downtime the
processor has. While this effectively doubles the
core count of the processor (e.g. a six-core processor
being able to process twelve simulations threads) the
doubling is not perfect, and the overall speed is
slightly diminished. This is demonstrated in Fig. 3.

Speedup of system
Comparisons

1

100 1000 2000 5000 10000
Size Of System

w

Speedup Factor (compared to single
threaded workloads)
[o

WAC/AT (SMT Off) m 2C/4T (SMT On)

Fig. 3 Graph Depicting the Impact of SMT

For the data here, the settings of the test
system’s motherboard were changed, first to run as
a quad-core system with SMT disabled, and then as
a dual-core system with SMT enabled, effectively
giving it four threads. For each of these setups, the
program was run for various system sizes set to all
run with four worker threads. As seen in Figure 3,
the dual-core with SMT consistently preforms 35 —
38 percent worse than a quad core without SMT,
even though both effectively have four processing
cores.

Using the equation from Amdahl’s Law, the
portion of the algorithm that is running in parallel
can be approximately extrapolated. The
extrapolations are shown in Fig. 4 below.

Portion Running in
Parallel Amdahl’s Law

e
[\e]
]

©
]
i

PORTION RUNNING IN PARALLEL
o o
fo)) o
L L

12345678 9101112
THREADS UTILIZED

—50 ——100
~—— 1000 e 2000
—— 5000 —— 10000

Fig. 4 Graph depicting the portion of code running in parallel
according to Amdahl’s Law

Looking at this graph, we can see that systems
larger than 1000 bodies appear to be running about
99% of the code in parallel, up uatil it switches from
6 to 7 threads, where it appears to drop to about 95%
of the code running in parallel. The systems with
smaller body counts, namely the 50 and 100 count
systems, initially have a large percentage that

- appears to be running in parallel, but as the thread

count increases, the overhead becomes a larger part
of the code overall, dramatically lowering the
percentage of the code in parallel. The 10-body
system is excluded from this graph since
multithreaded run are slower than the single
threaded run, it does not fit into the equation for
Amdahl!’s Law.

V. CONCLUSIONS

For the scenario explored in this paper, systems
such as the 10-body with very little data to prosses
will not see benefit from parallelization, whereas
systems that require exponentially more
calculations to prosses such as the 1000-body and
larger systems will see a very linear speedup, baring
external factors such as SMT. Systems with sizes
between these two categories, including the 50-body
and 100-body systems start to see speedup factors
similar to the larger systems until they reach a point
at which there is not enough data to make adding
more cores effective. The larger systems can be
assumed to have points where this stagnation
happens as well, but they are higher than can be
tested with this apparatus.

While parallelizing programs on a system can
have great speedup benefits, there are several
drawbacks and limitations. First, the amount by
which a program can be sped up is limited by
Amdahl’s Law, which states that any program with
portions that cannot be parallelized there is a
maximum amount it could be sped up by. Second,
each processing core added will not be able to have
as much of a performance increase as the previous
core, except in specific cases. Third, from
experience, the process of rewriting a program to
run in a paralleled fashion may be difficult for many
programmers and software engineers. Fourth, even
when the problem appears to be easily be able to be
parallelize each thread needs to be able to processes
enough data to outweigh the overhead associated
with being parallelized. Finally, there can be many
factors that can have surprising impact on the
performance of the code, including SMT and other
quirks in the technology or data.

VI. FUTURE RESEARCH

This is by no means the only way to parallelize
workloads, there are many other forms of
parallelization that can also be explored that may be
able to be tested more extensively but are outside the
scope of this study. These include utilizing the
following:

e Processors with many more processing
cores, such as the AMD EPYC or Intel
Xeon Phi processors.

e General Purpose Graphical Processing
Units (GPUs) that are designed for very
highly parallelized workflows such as
graphics rendering

e Distributed algorithm across a cluster of
networked computers. This includes the
recently popular blockchain technology
that is the basis for cryptocurrencies.

While none of these are explored in detail in
this paper, these would be great topics to research to
learn more about various parallelization
technologies. Both the use of GPUs and distribution
across a network are planned as possible future
expansions to the capabilities of this n-body
simulator.

ACKNOWLEDGMENTS

Thank you to the professors who helped me out
with ideas along the way, including Prof. Sible,
Prof. Sumey, Dr. Pyzdrowski, and Dr. Dieterle. I
would also like to thank to all my friends who
helped and supported me through this process,
especially Rachael and Alaina.

REFERENCES

[1T F. Peper, "The End of Moore's Law: Opportunities for
Natural Computing,” New Generation Computing, Osaka,

2017.

[2] The Economist Newspaper Limited, "Technology
Quarterly - After Moore's law," The Economist Newspaper
Limited, 2018 [Online] Available:

https://www.economist com/technology-quarterly/2016-
03-12/atter-moores-law. [Accessed 4 April 2018].

[3] M. Spencer, "The End of Moore's Law," US Black
Engineer & Information Technology, pp, 76-77,2018

[4] B. Crothers, "End of Moore's Law: It's not just about
physics," CNET, 2013

[5] G M. Amdahl, "Validity of the single processor approach
to achieving large scale computing capabilities," AFIPS
spring joint computer conference, 1967

[6] Daniels220, "English Wikipedia," |3 April 2008. [Online].
Available:
https://commons.wikimedia.org/wiki/File:AmdahlsLaw. sv
g [Accessed 15 42018]

[77 M. D Hill and M R Marty, "Amdahl’s Law in the
Multicore Era," Computer, pp. 33-38, 2008

